Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Discrete Trends

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Congratulations to Curt from Reigate College for cracking this tough nut problem. Here is Curt's solution:

If $n = n^{1\over n}$, I first assert that for an $n> 1$, then $n^{1\over n}$ is larger than 1

If $n> 1$ then, raising both sides to the power of $1/n$ yields $n^{1\over n}> 1^{1\over n}$. So $n^{1\over n}$ is larger than 1 no matter what the value of $1/n$. Therefore, one could make $n^{1\over n}=1+R$. As $n^{1\over n}$ is always larger than 1, $R$ is always a positive real number. Now, raising both sides to the power $n$ one obtains:

$$n = 1 + nR + \textstyle{1\over 2}n(n-1)R^2 +\cdots.$$

(Incidentally, $n> nR$, therefore $R< 1$ and so $n^{1\over n}< 2$)

As n is an integer larger than one, at least the third term of expansion must exist. It is clear that:

$$\eqalign{ n &> \textstyle{1\over 2}n(n-1)R^2 \cr {2n\over n(n-1)}&> R^2\cr \sqrt{2\over n-1} &> R }.$$

So $R\rightarrow 0$ as $n\rightarrow \infty$ and

$$n^{1\over n} = 1 + R < 1 + \sqrt{2\over n-1}.$$

So $n^{1\over n}\rightarrow 1$ as $n\rightarrow \infty$.

As a corollary, I will show that $\sqrt{2/(n-1)}$ grows smaller for successive values of $n> 1$. Assume that for some positive $B$, $\sqrt{2/(n-1)}< \sqrt{2/(n+B-1)}$. Now if this is to be true $1/(n-1)< 1/(n+b-1)$, therefore $n-1> n+B-1$, therefore $B< 0$, contrary to our conditions. Therefore the assertion that for some positive B the value of the function increases is fallacious. This will prove useful later.

For $n= 1,\ 2,\ $ etc. we have $n= 1,\ 2^{1/2},\ 3^{1/3},\ 4^{1/4}=2^{1/2}\ ...$ and we see that the values increase to a maximum of $3^{1/3}$ and then start to decrease.

Now to prove that 3 is the value of $n$ pertaining to the maximum of this discrete function, I will find an $n$ such that $1+\sqrt{2/(n-1)}$ is less that the cube root of 3. From that point onwards, it is known that for successive values $\sqrt{2/(n-1)}$ decreases, therefore beyond this point the value of $n^{1\over n}$ decreases; more importantly, is less than $3^{1\over 3}$. For $n=19$ this holds true, as it will for subsequent values. The "in-between" values have been checked and are less than $3^{1\over 3}$. If $n\geq 19$ then

$$n^{1\over n} < 1 + \sqrt{2\over 18}= {4\over 3}< 3^{1\over 3}$$




You may also like

Shades of Fermat's Last Theorem

The familiar Pythagorean 3-4-5 triple gives one solution to (x-1)^n + x^n = (x+1)^n so what about other solutions for x an integer and n= 2, 3, 4 or 5?

Exhaustion

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

Code to Zero

Find all 3 digit numbers such that by adding the first digit, the square of the second and the cube of the third you get the original number, for example 1 + 3^2 + 5^3 = 135.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo