Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cyclic Triangles

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Congratulations to Curt, Reigate College and to Andrei, Tudor Vianu National College, Bucharest, Romania for you solutions to this problem

When AB is a diameter angle $ACB$ is 90 degrees so we can use Pythagoras' Theorem. The area of the triangle is given by $\textstyle{1\over 2}ab = \textstyle {1\over 2}ch$ where $h$ is the length of the perpendicular from $C$ to $AB$. Then

$$(a+b)^2=a^2+b^2+2ab=c^2+2ch.$$

Thus $(a+b)^2$ is a maximum when $h$ is a maximum and equal to the radius of the circle $\textstyle {1\over 2}c$ . So the maximum value of $a+b$ is $c\sqrt 2$.
triangle inscribed in circle with altitude h
When $AB$ is not a diameter we have (using the Cosine Rule):

$$\eqalign{ (a+b)^2 &= a^2 +b^2 + 2ab \cr &= c^2 + 2ab\cos \angle ACB +2ab \cr &= c^2 +2ab(1+\cos \angle ACB) \cr &=c^2 +4ab \cos^2 \textstyle {1\over 2}\angle ACB.}.$$

As the area of triangle $ACB$ is given by $\Delta = \textstyle {1\over 2} ab\sin \angle ACB$ we have

$$\eqalign { (a+b)^2 &= c^2 + {8\Delta \cos^2 \textstyle{1\over 2}\angle ACB \over \sin\angle ACB} \cr &= c^2 + 4\Delta \cot \textstyle {1\over 2}\angle ACB }.$$

If we keep $A$ and $B$ fixed and vary $C$ then, as $c$ and $\angle ACB$ are constant, and the area of the triangle $\Delta$ is a maximum when $h$ is a maximum, it follows that $a + b$ is a maximum when $h$ is a maximum, that is when $a=b$ and the altitude of the triangle drawn from $C$ to $AB$ is a line of symmetry of the triangle. In this case

$$a=b={c\over 2\sin \textstyle {1\over 2}\angle ACB}.$$

Conjecture: Let $Q$ be a variable cyclic quadrilateral in a circle of radius $r$. Then the area and the perimeter of $Q$ will be a maximum when $Q$ is a square; that is when each of the diagonals of the quadrilateral is a diameter and each diagonal bisects of the other diagonal at right angles.
cyclic quadrilaterals
Labelling $Q$ as $ABCD$, consider triangle $ABC$ with $AC$ fixed and $B$ varying. Let $B'$ be the position of $B$ when, by the previous result $AB + BC$ is a maximum, that is when $AB = BC$ Note that this also gives the maximum area of triangle $ABC$. Similarly by considering triangle $ADC$ with $AC$ fixed, we find $D'$ where $AD+DC$ is a maximum and $AD=DC$. Now $B'D'$ is a diameter, keep this fixed and consider triangles $B'CD'$ and $B'AD'$. The positions of $C$ and $A$ that maximise the perimeter and area are $C'$ and $A'$ where $A'C'$ is a diameter. Hence, for the perimeter and area of $Q$ to be a maximum all the sides of the quadrilateral must be equal making $Q$ a square. Hence the maximum perimeter is $4r\sqrt 2$ and the maximum area is $2r^2$.













You may also like

Absurdity Again

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Ball Bearings

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo