Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sheep Talk

Age 7 to 11
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Sheep Talk


sheep

In sheep talk the only letters used are B and A. Sequences of words are formed as follows:

The first word only contains the single letter A.

To get the next word in the sequence change each A in the previous word into B and each B in the previous word into AB.

Write down the first ten words in this sequence.

Count the number of A's in each word in the sequence. Then count the number of B's in each word in the sequence. Finally count the number of letters in each word in the sequence. You now have three sequences of numbers. What do you notice? Will the same patterns continue if you generate longer sequences of words?
 

Why do this problem?
Doing this investigation learners notice patterns and make and prove conjectures. It offers one of the best ways for learners to discover Fibonacci sequences for themselves. Whether or not they have already met these sequences it is important to ask whether the pattern will continue and, more importantly, why it will continue?

Learners will notice that the same sequences of numbers occur when they count the number of A's in the words, when they count the number of B's in the words and also when they count the total number of letters.The teacher could simply get the learners to count the letters, fill in a table, make conjectures about how many A's and B's in the next word and then check if their conjectures were correct. Then she can choose how long to pursue the reasons and the proof that the sequences are Fibonacci sequences.

For the proof of why this process gives the Fibonacci sequence you have to consider how the letters change from one word to the next and generate copies of themselves. This can lead to a lot of mathematical talk and it can give excellent practice in mathematical reasoning and communication.

Possible approach
As with all problem solving, the first step is to understand the question. If the teacher asks the learners to read the question for themselves and then to tell her the rule it will give the learners practice in thinking for themselves. Asking the learners to write the next word on their individual 'show-me boards' ensures that every learner is actively involved. A list of about six words should be written down and then a table of results set up and the numbers of letters filled in the table.

Learners can each fill in their own tables and be asked to work in pairs to see what patterns they can spot. When they see a pattern (conjecture) they should be asked to use the Sheep Rule to write down some more words in the sequence and see if the pattern continues (test the conjecture). If they find it does then learners should be asked to try to explain why the pattern comes out that way.

Learners can be asked to write down the rule for the sequence in words and then perhaps if they can use symbols to give the rule. At this age the teacher may simply accept the different notations offered by the class members or choose to discuss with the class why it is convenient to have an agreed (standard) notation. This could lead comfortably to using algebraic notation as only counting is involved and not solving equations, which is perhaps more demanding.

(The Fibonacci sequence can be defined as the sequence where the $n$th term is denoted by $F_n$, where $F_0$ and $F_1$ are $0$ or $1$ and $F_n=F_{n-1}+F_{n-2}$.)

Key questions
Do you notice a pattern in the sequence of numbers?
How many A's do you think there will be in the next word (that you have not written down yet)?
Would you like to write down the next word in the list and see if you were right?
Look at an A in a word. How many A's come from it in the next word and in the word after that?
How many A's in a word come from an AB in the word before it?
How do you find the number of A's in the tenth word? Why?
Would you have to write the whole list of 20 words to find out how many A's there would be in the twentieth word?
Ask similar questions for B's

Possible extension
Try the problem 1 Step 2 Step

Possible support
It is helpful to write the words underneath each other, with the letters spaced out so that the learners can see how each letter comes from one of the letters in the word above it.

You may also like

Room Doubling

Investigate the different ways you could split up these rooms so that you have double the number.

Fibonacci's Three Wishes 2

Second of two articles about Fibonacci, written for students.

Leonardo of Pisa and the Golden Rectangle

Leonardo who?! Well, Leonardo is better known as Fibonacci and this article will tell you some of fascinating things about his famous sequence.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo