Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Golden Construction

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

construction diagram
Thank you to Shaun from Nottingham High School and Andrei from Tudor Vianu National College, Bucharest, Romania for these solutions.

(1) Drawing the figure, I observe that ratios $AE/AD$ and $BC/BE$ are approximately equal, having a value of 1.6.

(2) From Pythagoras' Theorem I calculate $MC$ (in the right-angled triangle $MBC$): $$\eqalign{ MC^2 &= BC^2 + MB^2 = 1 + 1/4 \cr MC &= \sqrt5 /2 }.$$ So $AE=(\sqrt 5 + 1)/2$ and $BE=(\sqrt 5 - 1)/2$. The ratios are: $${AE\over AD}= {\sqrt 5 + 1\over 2}$$ and $${BC\over BE}= {1\over (\sqrt 5 - 1)/2} = {\sqrt 5 + 1\over 2}.$$ So, $AE/AD = BC/BE.$

(3) From this equality of ratios, I find out that $$BE = {AD.BC\over AE} = {1\over \phi}$$ But $AE = AB + BE$ so $$\phi = 1 + {1\over \phi}.$$ graph of y=x and y=1+1/x

(4) Substituting $\phi = 1$ the left hand side of this expression is less than the right hand side. If we increase the value given to $\phi$ the left hand side increases and the right hand side decreases continuously. Substituting $\phi = 2$ the left hand side is greater than the right hand side so the value of $\phi$ which satisfies this equation must lie between $1$ and $2$.

The two solutions of the equation can be found at the intersection of the cyan curve ($y=1 + 1/x$) and magenta curve ($y=x)$. Only the positive value is considered and it is approximately 1.618.

(5) Now, I solve the equation. It is equivalent to $\phi^2 - \phi -1 = 0$ so the solutions are $$\phi_1 = {1-\sqrt 5\over 2}$$ and $$\phi_1 = {1+\sqrt 5 \over 2}.$$ Only the second solution is valid because $\phi > 0$ .



You may also like

Kissing

Two perpendicular lines are tangential to two identical circles that touch. What is the largest circle that can be placed in between the two lines and the two circles and how would you construct it?

Gold Again

Without using a calculator, computer or tables find the exact values of cos36cos72 and also cos36 - cos72.

Pentabuild

Explain how to construct a regular pentagon accurately using a straight edge and compass.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo