Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Golden Eggs

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Congratulations Joseph from Colyton Grammar School, Adam from the University of Waterloo, Shaun from Nottingham High School and Andrei from Tudor Vianu National College, Bucharest, Romania for your solutions.

(1) If the area of the ellipse equals the area of the annulus then $\pi ab = \pi b^2 - \pi a^2$ and so $ab = b^2 - a^2 $. Then, dividing by $a^2$, $$ b/a = (b/a)^2 -1.$$ The ratio we want to find is $b/a$, the ratio of the longer to the shorter axis of the ellipse. So let $b/a = x$ then $$x^2 - x - 1 = 0.$$ Using quadratic formula: $$x = {1\pm \sqrt 5 \over 2}$$ We choose the positive root knowing that the ratio $b/a$ is positive so this ratio is equal to the golden ratio.

(2) Note that $R$ appears itself in the nested root. Therefore we can say $$R = \sqrt (1 + R)$$ and so $$ R^2 - R - 1 = 0.$$ We have a quadratic of the same form as above. Hence we find $R$ to be the golden ratio.


You may also like

Converging Product

In the limit you get the sum of an infinite geometric series. What about an infinite product (1+x)(1+x^2)(1+x^4)... ?

Rain or Shine

Predict future weather using the probability that tomorrow is wet given today is wet and the probability that tomorrow is wet given that today is dry.

There's a Limit

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo