Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cuisenaire Counting

Age 5 to 7
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We have had a few good solutions come in for this task.

Mahad from Beechview Academy sent in the following:

First, you need to look at the yellow rod. A yellow rod makes FIVE white squares so that is one way. Now, look at the red rod. 1 red rod = 2 white rods, so you could make 2 reds and 1 white, as well as the inverse (1 white and 2 red). Then you could do others based on what you just worked out (eg. red, white, red). You could also do 3 white and 1 red and make combinations from that.

Now, look at the dark green rod. 1 dark green rod = 6 WHITE rods. So you could do 3 reds next to each other. You could also do 2 white and 2 red, etc.

Laura sent in her solution as pictures copied from the interactivity, which is very helpful - thank you, Laura.

Here is her solution to the first challenge and the 13 different ways to make the green rod using reds and whites:

Mohammed raza Khunt from Mahatma Gandhi International School in India wrote:

My solution is showing that every even number requires some number of red rod and odd rods require some number of white AND red rods to make an odd rod. The conclusion is that odd requires red and white rod and even requires only some red rod. I have made some combinations for it in the picture.

I think I understand what you've been thinking, however the explanation probably needed to say something about how the even numbers can be made from only red rods while odd numbers will require a white.

Thank you for these, maybe others seeing these may also have a go at this task.

You may also like

I'm Eight

Find a great variety of ways of asking questions which make 8.

Let's Investigate Triangles

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Noah

Noah saw 12 legs walk by into the Ark. How many creatures did he see?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo