Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Two Cubes

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Student Solutions

We had a good crop of solutions to this one, using different methods.

Two cubes have integral side lengths, and the sum of their volumes is exactly the sum of their edge lengths. What are their edge lengths? Let the lengths of the edges of the two cubes be $a$ and $b$, with $a \geq b$. Thus $a^3 + b^3 = 12a + 12b.$

Soh Yong Sheng, age 12, Tao Nan School, Singapore noted that $a$ and $b$ have to be quite small or else $a^3 + b^3$ is too big, and as it increases much faster than $12a + 12b$, the gap gets wider, also that $a$ and $b$ cannot be an odd number and an even number because then the total of the two volumes would be odd whereas it has to be a multiple of 12. Testing the smallest few pairs (3,1), (5,1), (4,2), (5,3) ... the only one of these satisfying the conditions is $a = 4$ and $b=2$. For larger values of $a$ and $b$ the value of $a^3 + b^3$ is already too big so there cannot be any other possibilities.

Alex Fletcher, age 17, King Edward and Queen Mary School, Lytham solved a quadratic equation to find $a$ in terms of $b$: $$a^3 + b^3 = (a + b)(a^2 - ab + b^2) = 12 (a + b).$$ As $a$ and $b$ are positive integers, $a + b \neq 0$. Dividing by $(a + b)$ gives $$a^2 - ab + b^2 = 12.$$ Hence $$a = {b\pm \sqrt{b^2 - 4(b^2 - 12)}\over 2}= {b\pm \sqrt {48 -3b^2}\over 2}.$$ Since $a$ and $b$ are both positive integers, $b\leq 4$ and the only values satisfying the equation are $a = 4$ and $b = 2$. Clearly the original equation is symmetric but we took $a> b$.

Kerwin Hui reasoned as follows. We have
\begin{eqnarray} \\ a^2 - ab + b^2 &= 12 \\ (a - b)^2 + ab &= 12. \end{eqnarray}

Checking the parity of $a$ and $b$ we have $a$, $b$, $(a - b)^2 + ab$, (Odd Odd Odd), (Odd Even Odd), (Even Odd Odd), (Even Even Even). So $a$ and $b$ must both be even. Let $a=2c$ and $b=2d$, we have $$\eqalign{ (2c - 2d)^2 + (2c)(2d) &= 12 \cr (c - d)^2 +cd = 3.}$$ As $c$ and $d$ are positive, $cd> 0$ so $(c - d)^2 \leq 3$ so $(c - d)= 0,1$ [it can't be negative because $a> b$]. The case $c=d$ gives $c^2=3$ which has no integer solutions so $(c - d)=1.$ This gives $cd = 2$ hence $c - 2/c = 1$ which gives the equation $$c^2 - c - 2 = 0.$$ The solutions are $c=2$ and $d=1$, or $c=-1$ which is rejected as $c$ is positive. Therefore the only non-trivial solution for the lengths of the edges is 4 and 2.

Sergio Moya, Ling Xiang Ning and Andaleeb Ahmed also sent in good solutions.

You may also like

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

Square Mean

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Not Continued Fractions

Which rational numbers cannot be written in the form x + 1/(y + 1/z) where x, y and z are integers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo