Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Mathdoku

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Mathdoku

The idea of this task is to complete the four by four grid so that the numbers 1, 2, 3 and 4 appear only once in each row and only once in each column.

You will see that some squares, or groups of squares, are outlined with a thick black line. These groups of squares are called 'cages'.

In the corner of one of the squares in a cage, you will see a small target number and usually a mathematical operation too. For example, if a cage of three squares has '8x' in the corner of one of the squares, it means that the three numbers in that cage multiply together to make 8.

If the cage is made up of only one square, which has a number in its corner but not an operation, that number is telling you exactly what goes in that square.

Have a go at the grid in the interactivity below. Clicking on a square allows you to type in a number, or choose a number from the options given. You can change your mind just by typing/choosing another number instead.

How would you convince someone else that the number you have put in a square must be correct?

Click on the Settings menu (the purple cog in the top right-hand corner) to select another grid to try. You can increase the level of difficulty in the Settings menu too.

If you would prefer to work away from the computer, you can print out these grids: Mathdoku grids of difficulty 1, Mathdoku grids of difficulty 2, Mathdoku grids of difficulty 3.

You may also like to take a look at the mathematical Sudokus feature, which includes also 3 by 3, 5 by 5 and 6 by 6 Mathdokus.

Why do this problem?

Mathdoku grids are a motivating context for learners to develop fluency with number bonds, factors and multiples, as well as providing an opportunity for learners to reason mathematically. Having experience of creating chains of reasoning provides an excellent basis on which to create proofs.

Possible approach

This problem featured in an NRICH Primary webinar in January 2022.

Display the interactivity and, without saying much else, invite learners to consider what they notice and what questions they would like to ask. Give them time to think on their own, then talk to a partner, before drawing everyone together. Facilititate a whole group discussion, using the points raised to explain how the Mathdoku grid works. It would be useful to introduce the vocabulary of 'cages' and squares.

Ask for suggestions about where we might start. Which square might we fill in first? (There are two cages which are each single cells - top right and bottom right - so they could be completed straightaway in either order.) Invite learners to suggest which square we might fill in now. At this point, emphasise that you are particularly interested in their reasoning. How do they know that the number they are offering must go in that square? Can they convince the rest of the class and you?

You may wish to demonstrate how to seek help from the interactivity if learners are not sure which square is possible. (Clicking on 'Show me a square I can solve' will result in a question mark appearing in a square which is solvable. Clicking on 'Give me a hint about this square', will suggest how you might go about working out the number in that square.)

You can continue in this way with the whole group for as long as you feel is appropriate. Once everyone has got the idea, you can ask learners to complete the grid in pairs, either using the interactivity on a tablet or computer, or using a printed copy (this sheet contains three different grids, corresponding to the three grids which are rated as 'difficulty level 1' in the interactivity). As they work, listen out for examples of children's watertight reasoning, which could be shared with the whole class in the plenary.

You may wish to display a new grid in the plenary for the class to solve together, so they have chance to practise creating chains of reasoning using their knowledge of number and calculation.

Key questions

What are the possible options for this square? How do you know?
Is there any other information in the grid that could help us narrow down the possibilities?
Can you convince me/someone else that this number must go in this square?

Possible support

The interactivity has built-in hints which will help all learners access this challenge. Many children will find it useful to have paper and pencil to hand to jot down possibilities for the square they are working on (this could be a print-out of the grid, but could simply be plain paper). This feature also contains 3 by 3 Mathdokus, which some learners might find useful to try before the 4 by 4 grids.

Possible extension

Once learners have tried all the grids in the interactivity (see the Settings menu), or on paper (Mathdoku2.pdf and Mathdoku3.pdf), you could challenge them to create their own Mathdoku in pairs. Their grid must have a unique solution and they can give it to another pair to solve.

Some of the Mathdokus in this feature offer further challenge due to their increased grid size.

Learners may also like to have a go at one of NRICH's Sudokus, which contain the numbers 1-9 in each row, column and three by three grid (currently they are paper based only). A First Product Sudoku would be a good starting point. 

You may also like

Pebbles

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

It Figures

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo