Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Plus or Minus

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

This solution is from Andrei from Tudor Vianu National College, Bucharest, Romania. Calculating $F_1$, $F_2,. . . , F_7$, I obtain: $$F_1 = 1;\ F_2 = 1;\ F_3 = 2;\ F_4 =3;\ F_5 = 5;\ F_6 = 8;\ F_7 = 13.$$ Calculating $F_{n-1}F_{n+1}$ for some values of $n$: \begin{eqnarray} n = 2: F_1F_3 &= 2 = 1 + 1 = (F_2)^2 + 1 \\ n = 3: F_2F_4 &= 3 = 4 - 1 = (F_3)^2 - 1 \\ n = 4: F_3F_5 &= 10 = 9 + 1 = (F_4)^2 + 1 \\ n = 5: F_4F_6 &= 24 = 25 - 1 = (F_5)^2 - 1 \\ n = 6: F_5F_7 &=65 = 64 + 1 = (F_6)^2 + 1 . \end{eqnarray} Observing this, I try to prove the conjecture that: $$F_{n-1}F_{n+1}= (F_n)^2 + (-1)^n.$$ Using the general formula for $F_{n-1}$ and $F_{n+1}$ in terms of $\alpha$ and $\beta$, the roots of the equation $x^2-x-1=0$, I find: \begin{eqnarray} F_{n-1}F_{n+1} &= {1\over 5}(\alpha^{n-1}-\beta^{n-1})(\alpha^{n+1}-\beta^{n+1}) \\ &= {1\over 5}[ \alpha ^{2n} + \beta^{2n}-(\alpha^2+\beta^2)(\alpha\beta)^{n-1}] \\ &= {1\over 5}[(\alpha^n-\beta^n)^2+ 2(\alpha\beta)^n -(\alpha^2+\beta^2)(\alpha\beta)^{n-1}] \\ &= F_n^2 -{1\over 5}(\alpha\beta)^{n-1}(\alpha-\beta)^2 . \end{eqnarray} At this point we use the fact that $\alpha\beta=-1$ and $\alpha-\beta=\sqrt 5$ which gives the result $$F_{n+1}F_{n-1}=F_n^2 +(-1)^n$$ thus proving the conjecture.

You may also like

Golden Powers

You add 1 to the golden ratio to get its square. How do you find higher powers?

Continued Fractions I

An article introducing continued fractions with some simple puzzles for the reader.

Fibonacci Factors

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo