Observing this, I try to prove the conjecture that:
F_{n-1}F_{n+1}= (F_n)^2 + (-1)^n.
Using the general formula for
F_{n-1} and F_{n+1} in terms of \alpha and \beta, the roots
of the equation x^2-x-1=0, I find: \begin{eqnarray}
F_{n-1}F_{n+1} &= {1\over
5}(\alpha^{n-1}-\beta^{n-1})(\alpha^{n+1}-\beta^{n+1}) \\ &=
{1\over 5}[ \alpha ^{2n} +
\beta^{2n}-(\alpha^2+\beta^2)(\alpha\beta)^{n-1}] \\ &= {1\over
5}[(\alpha^n-\beta^n)^2+ 2(\alpha\beta)^n
-(\alpha^2+\beta^2)(\alpha\beta)^{n-1}] \\ &= F_n^2 -{1\over
5}(\alpha\beta)^{n-1}(\alpha-\beta)^2 . \end{eqnarray}
At this
point we use the fact that \alpha\beta=-1 and \alpha-\beta=\sqrt
5 which gives the result F_{n+1}F_{n-1}=F_n^2 +(-1)^n