Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Pentabuild

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Harry explained why we get a Pentagon:

I firstly calculated the length of $YS$ and the equations of the circle using Pythagoras' theorem on the triangle $YOS$ (and by symmetry $YOR$) to get:

$$YS=\frac{\sqrt{5}}{2}$$ Equation of $C_1$: $$x^2+y^2=1$$ Equation of $C_4$: $$x^2+(y+1)^2=\frac{(\sqrt{5}-1)^2}{4}$$ Equation of $C_5$: $$x^2+(y+1)^2=\frac{\sqrt{5}+1)^2}{4}$$

At the points of intersection of two circles, the points satisfy the equations both both circles and so we have a set of two simultaneous equations to solve. Solving these gives at the intersection of $C_1$ and $C_4$ (so for the points $C$ and $D$), $y=\frac{-(\sqrt{5}+1)}{4}$ and at the intersection of $C_1$and $C_5$, $y=\frac{\sqrt{5}-1}{4}$.

But we can now look at the hint, and find we have the same y coordinates for all our points as those of a regular hexagon. But since we are on the circle, we can work out the $x$ coordinates from the $y$ coordinates. So we have the same points as the regular pentagon in the notes section, and so this is a regular pentagon.

Tom from Bristol Grammar School then suggested a method to construct a regular decagon using the pentagon that we've already constructed.

  1. Construct the regular pentagon using the prescribed technique.
  2. Bisect the angle $\angle A C E$ by drawing a circle centre $A$ and a circle of the same radius (perhaps $E C$) centre $E$ and drawing a straight line between one of the points at which the circles intersect and point $C$. (This works because $A C=E C$, as the pentagon is regular - it is a fact that is obvious and easily proven using SAS congruence, and therefore it is equivalent to the classroom-taught angle bisection technique.)
  3. Let us call the point (other than $C$) at which this line crosses the pentagon's circumcircle $P$. Join $A$ to $P$, and join $E$ to $P$. Essential to our method is that now $A P=P E$, which is clearly true by SAS congruence of the triangles $A C P$ and $E C P$ ($A C=E C$ was used above, $\angle A C P= \angle P C E$ holds because $P C$ is an angle bisector, $C P$ is common).
  4. Construct the circle centre $A$ through $P$ and label the point (other than $P$) at which it crosses the circumcircle of the pentagon $Q$. Draw in the line segments $A Q$ and $Q B$. Similarly construct the circle centre $B$ through $Q$, join up the line segments, and repeat this process for $C$ and $D$.
  5. The 10-sided shape we now have inscribed in the circle is a regular decagon.

You may also like

Kissing

Two perpendicular lines are tangential to two identical circles that touch. What is the largest circle that can be placed in between the two lines and the two circles and how would you construct it?

Gold Again

Without using a calculator, computer or tables find the exact values of cos36cos72 and also cos36 - cos72.

Golden Construction

Draw a square and an arc of a circle and construct the Golden rectangle. Find the value of the Golden Ratio.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo