Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Some Cubes

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

An excellent crop of solutions here! Syed Farhan Iskander of Foxford School School and Community College listed the cubes of every whole number until he got to a cube that was larger than 7163. Then he systematically examined the differences between 7163 and these cubes to find cases where the difference was a cube number. In this way he showed that the only two numbers $x$ and $y$ such that $x^3 + y^3 = 7163$ are 11 and 18. Ling Xiang Ning of Tao Nan School, Singapore and Elizabeth and Ella of Madras College also used this method.

We give two further solutions using different methods, one by Koopa Koo from Boston College which uses the prime factorisation of 7163 and another by Adam of King Jame's School, Knaresborough, based on the parity of the numbers.

Firstly Adam's solution: Let the numbers be $x$ and $y$. Assume they are integers. Then $$x^3 + y^3 = 7163 *.$$ This implies that one of the numbers must be odd and the other even. Let $x$ be the odd number. Then, $x = 2n + 1$ and $y = 2m$ where $n$ and $m$ are integers. Substituting these in the equation marked $*$ gives :
\begin{eqnarray} \\ (2n + 1)^3 + (2m)^3 &=& 7163 \\ 8n^3 + 12n^2 + 6n + 1 + 8m^3 &=& 7163 \\ 8n^3 + 12n^2 + 6n + 8m^3 &=& 7162 \\ 4n^3 + 6n^2 + 3n + 4m^3 &=& 3581 \\ n(4n^2 + 6n + 3) + 4m^3 &=& 3581. \end{eqnarray}
Now $4m^3$ must be even, so that $n(4n^2 + 6n + 3)$ must be odd. This means that $n$ must be odd. I can therefore write $n$ as $n = 2z + 1$ where $z$ is an integer, i.e. $x = 4z + 3$. This gives
\begin{eqnarray} (4z + 3)^3 + (2m)^3 &=& 7163 \\ 64z^3 + 144z^2 + 108z + 27 + 8m^3 &=& 7163 \\ 64z^3 + 144z^2 + 108z + 8m^3 &=& 7136 \\ 16z^3 + 36z + 27z + 2m^3 &=& 1784. \end{eqnarray}
Now $2m^3$ is even so that $z(16z^2 + 36z +27)$ must be even. This means that $z$ must be even.

I have now greatly simplified the problem because there are only three even values of $z$ for which $z(16z^2 + 36z + 27)$ is less than 1784. I will try each of these in turn to see which gives an integer solution for $m$.

If $z=0$, then $z(16z^2 + 36z + 27) = 0$ and hence $2m^3 = 1784$. This does not have an integer solution for $m$.

If $z=2$ then $z(16z^2 + 36z + 27) = 326$, then
\begin{eqnarray} 2m^3 &=& 1784 -326 = 1458 \\ m^3 &=& 729 \\ m &=& 9. \end{eqnarray}
Because $z = 2$ gives an integer value for $m$ we have $z=2$, $m=9$ gives the solution $x = 4z + 3 = 11$ and $y = 2m = 18$. So the numbers are 11 and 18.

Now Koopa's solution: We have $7163 = 13 \times 19 \times 29$ by prime factorisation. Hence, $$x^3 + y^3 = (x + y)(x^2 - xy + y^2) = 13 \times 19 \times 29.$$Now it falls into the following cases:

(1) $x + y = 1$ which is rejected as $x, y \geq 1$,
(2) $x + y = 13$, $x^2 - xy + y^2 = 19 \times 29$,
(3) $x + y = 19$, $x^2 - xy + y^2 = 13 \times 29$,
(4) $x + y = 7163$, $x^2 - xy + y^2 = 1$,
(5) $x + y = 29$, $x^2 - xy + y^2 = 13 \times 19.$

Consider (2), $x^2 - xy + y^2 = (x + y)^2 - 3xy = 19 \times 29$ implying $169 - 19 \times 29 = 3xy = -382$ which is impossible as $x$ and $y$ are positive.

Consider (3), $361 - 13\times 29 = 3xy = - 16$ which is another contradiction.

Consider (4), $51308569 - 1 = 3xy$ implying that $xy = 17102856$ and $x + y = 7163$. Hence
\begin{eqnarray} \\ (7163 - y)y &=& 17102856 \\ y^2 - 7163y + 17102856 &=& 0. \end{eqnarray}
The discriminant of this quadratic is negative implying that no real solutions exist and hence this case is rejected.

Lastly (5),
\begin{eqnarray} 841 - 247 &=& 3xy \\ xy = 198, \ (x + y) &=& 29 \\ y^2 - 29 y + 198 &=& 0 \\ (y - 18)(y - 11) &=& 0. \end{eqnarray}


Hence the two numbers are 11 and 18.

You may also like

Em'power'ed

Find the smallest numbers a, b, and c such that: a^2 = 2b^3 = 3c^5 What can you say about other solutions to this problem?

Factorial Fun

How many divisors does factorial n (n!) have?

Public Key Cryptography

An introduction to coding and decoding messages and the maths behind how to secretly share information.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo