Or search by topic
$$y = -\frac{b}{\sqrt{16 - b^2}}x + b.$$ When $x = 1, \ y = 1$ we have $$ 1 = \frac{-b}{\sqrt{16 - b^2}} + b$$ and hence $$b^4 - 2b^3 - 14b^2 + 32 b -16 = 0.$$ |
A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?