Drawing the diagonals for each of the shapes and counting shows that an octagon has $20$ diagonals, a hexagon has $9$, a pentagon has $5$ and a quadrilateral has $2$.
This can be used to show that A to D are all correct. A quadrilateral has half as many diagonals as it has sides, not twice as many, so statement E is false.
Alternatively, each vertex in a polygon shares a diagonal with $n-3$ others, if there are $n$ vertices, since it does not share one with itself or either of its neighbours. There are $n$ vertices, so this is $n(n-3)$. But this means we have counted each diagonal twice, so there are
$\frac 12 n(n-3)$ in total. This gives the numbers obtained directly above.
Draw a square. A second square of the same size slides around the
first always maintaining contact and keeping the same orientation.
How far does the dot travel?