Or search by topic
Ideally, this activity is best done where there is space for pupils to stand up and move, for example in a hall, or a classroom with the furniture pushed to one side, or outside. If this isn't possible, then you could ask children to stand near their tables or lay the string on their tables. Wherever you are, learners will need to be in groups of four (or three).
Where are the lines of symmetry?
How could you convince me?
Are there any other quadrilaterals with exactly one/two/three/four line/s of symmetry? How do you know?
Ask children to try and convince you why the result for three lines of symmetry is true. This is by no means easy but listen for explanations which use sound logic and apply relevant properties of quadrilaterals. Learners might pose conjectures which focus on, for example, whether the number of lines of symmetry is linked to the factors of the number of sides of the shape being investigated.
Some children may find it useful to research different quadrilaterals to start with and then analyse their characteristics, using the string to test the lines of symmetry. Some might find mini-whiteboards or paper useful for sketching.
Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?
Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?
How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?