Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Giant Holly Leaf

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


holly leaf construction1
construction 2

This model holly leaf is made in sections and joined together. Like a real holly leaf, it will not lie flat. It has negative curvature.

To make the holly leaf, a circle centre $C$ of radius 5 cm and radii $CA$ and $CB$ with $\angle ACB = 125$ degrees are drawn. The tangents to the circle at $A$ and $B$ meet at the point $P$. Eight identical 3 sided shapes are made by cutting along $PA$ and $PB$ and around the arc $AB$ to make a 3 sided shape with 2 straight edges and one edge along the minor arc of the circle (the circles are thrown away).

Two identical 4-sided shapes are made by drawing a circle with radius 5 cm, a diameter $B$*$D$* and tangents $B$*$P$* and $D$*$Q$*equal in length to $PB$. These shapes have edges $B$*$P$*, $P$*$Q$*, $Q$*$D$* and the semicircular arc (inside the rectangle) from $B$* to $D$*.

The sketch shows (on a smaller scale) how the ten pieces are joined together to make the "holly leaf".

Find the length of the boundary of the yellow area around $P$ which is bounded by six arcs centred at $P$, each of radius $r$ cm. All points on the boundary of the yellow region are equidistant from the point $P$.

If the surface at $P$ were flat, the boundary of the region would be a circle and its length would be $2\pi r$. In this case the length of the boundary is greater than $2\pi r$ and the surface of the "holly leaf" has negative curvature at $P$.

Compare the perimeter and area of this "holly leaf" with the similar flat leaf for which $\angle ACB = 135$ degrees.

See the problem "Holly" for the flat version of this problem.

What happens to the holly leaves as the angle $\angle ACB$changes?

[For positive curvature the boundary is less than $2 \pi r$ in length.]


See the article Curvature of Surfaces to find out more about this subject.

You may also like

Quadarc

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the area enclosed by PQRS.

Get Cross

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

Two Circles

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo