Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Without Calculus

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions

Given that $u > 0$ and $v > 0$ what is the smallest possible value of $1/u + 1/v$ given that $u + v = 5$?

Here is a solution from Danny of Milliken Mills High School, Canada.

Let $S$ be the mininum value,
$S = 1/u + 1/v = (v + u)/(uv)$.
Since $u + v = 5$ then $S = 5/uv$.

The maximum value of $uv$ gives a mininum value of $S$. Given $u + v = 5$ then $v = 5 - u$.

Let $f(u)$ give the value of $uv$ as $u$ and $v$ change. Then $ f(u) = u(5 - u) = -u^2 + 5u $. This is a quadratic function and the vertex $(u, M)$ of the graph of $f(u)$ is at $(2.5, 6.25)$. It means the maximum value occurs at $M = 6.25$ when $u = 2.5$ and $v = 5 - u = 2.5$. So the mininum value $S = 1/2.5 + 1/2.5 = 0.8$.

Vassil from Lawnswood High School, Leeds used the same method, and drew two graphs to illustrate it, one to show the possible values of $u$ and $v$ where $u + v =5$ and the other, shown below, the graph of $f(u) = u(5 - u) = -u^2 + 5u$ for the corresponding range of values of $u$ and $v$.

Graph of solution.

Peter and Koopa of Boston College used the Arithmetic Mean - Geometric Mean inequality (AM-GM) noting as above that minimising $1/u + 1/v$ is the same as maximising $uv$. Here is Peter's solution:

From the AM-GM inequality:

arg = $uv \leq [(u+v)/2]^2 = (5/2)^2 = 25/4.$

The maximum of $uv$ is therefore at equality, where $u = v = 5/2$, yielding $\max(uv) = 25/4$

Hence the minimum value of $1/u + 1/v$ subject to $u+v = 5$, $u$, $v > 0$, is $4/5$.


You may also like

Mean Geometrically

A and B are two points on a circle centre O. Tangents at A and B cut at C. CO cuts the circle at D. What is the relationship between areas of ADBO, ABO and ACBO?

Pythagorean Golden Means

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Three Ways

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo