Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Snooker Frames

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Snooker Table

A single game of snooker is called a frame. In the first round of a snooker tournament, the matches are played over eleven frames (so the first player to win six frames wins the match). In the later rounds matches are played over 15 frames. Assume that each player has steady nerves and his chance of winning any frame (irrespective of who starts) is constant.


In the problem Snooker you were asked to find the probability that a player wins a match over fifteen frames, given that his chance of winning any frame is $0.4$. You should now find the probability that this player wins a match over eleven frames.

It is believed that the weaker players have a better chance of winning the matches over eleven frames than they do over fifteen frames. Do your results confirm this or not?

Does this surprise you, or not? Why?


Numerical investigation: Is it generally the case that more frames lead to a reduced chance of a weaker player winning? Devise a spreadsheet which computes the chance of a weaker player winning a match in which the first player to $1, 2, 3, 4, \dots, 17, 18$ frames wins. The world snooker championship final is taken over the best of $35$ frames. In order to have at least a $10\%$ chance of winning such a final, what probability of winning each frame would you need to have? Plot $\log(n)$ against $P(win)$.




You may also like

Knock-out

Before a knockout tournament with 2^n players I pick two players. What is the probability that they have to play against each other at some point in the tournament?

Squash

If the score is 8-8 do I have more chance of winning if the winner is the first to reach 9 points or the first to reach 10 points?

Snooker

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo