Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Snooker Frames

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem gives practice in a relatively complicated probability calculation drawn from a simple situation. It will require clear visualisation of the possibilities, accurate working and a good understanding of permutations and combinations. It gives a good chance to practise calculator skills and the use of the $^nC^r$ button. The context will allow a discussion concerning the role of intuition versus calculation in probability.

Possible approach

Before beginning this problem ask students whether they think that a weaker player is more or less likely to win over a long match. Can they explain why they believe that this is the case? Are these arguments completely convincing to the rest of the class. Can they estimate how likely they believe that the weaker player is to win over $11$ frames? Perhaps each student could make a guess. The closest guess without going above wins.

In probability, calculation is used to settle disputes. Before students solve the problem they will need to be very clear as to the combinations of matches which lead to a win for the weaker player. They will then need to write this down in a clear way before working out the numbers. Spreadsheets or calculators will be necessary for this. As the calculation is relatively long it will require good calculator or recording skills successfully to obtain the answer, even if the route to the answer is conceptually clear to students. It might provide an opportunity explicitly to practise the use of calculator keys such as ANS, $^nC^r$ and $!$. Can students encode the entire calculation in a single line of calculation?

Once the answer is found, compare with the initial estimates that the class made. Whose intuition was reliable?

Key questions

Before attempting the computation, can you estimate the chance of the weaker player winning the match?

If the weaker player only had a 4% chance of winning, what do you feel would happen to his chances of winning the match as the number of frames increases?

Which player must win the final frame of the match?

What are the possible final scorelines?

Possible extension

Can students write down a generalisation of the formula used to show the chance of a player winning a match played over $2n+1$ frames? The numerical investigation will allow students to put their formula into practice.

Possible support

Reduce the complexity of the calculation: what is the chance of winning a best of $3$ or a best of $5$ match?

You may also like

Knock-out

Before a knockout tournament with 2^n players I pick two players. What is the probability that they have to play against each other at some point in the tournament?

Squash

If the score is 8-8 do I have more chance of winning if the winner is the first to reach 9 points or the first to reach 10 points?

Snooker

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo