Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Quadarc

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions

Arun Iyer's solution.

The solution below was done by Arun Iyer, age 17, S.I.A Junior College, South Indian Assoiate, Nr Station Dombivli (W), Thane Di 421 202, India and similar solutions were sent in by Tony Cardell and John Lesieutre, age 14, from State College Area High School, Pennsylvania, USA.

Given a square $ABCD$ of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The arcs intersect at $P$, $Q$, $R$ and $S$ and we have to find the area $PQRS$ enclosed by the arcs.

Consider triangles $CPD$ and $SBD$. Both are equilateral triangles. ($CP = PD = CD$ = 10cm and $SB = SD = BD$ = 10cm). Therefore from the diagram \(x+y = 60^\circ \) and \(x+z = 60^\circ \). We know that \(x+y+z= 90^\circ \) so from these three equations,

\(x= 30^\circ =\pi /6\). The area of segment $PS$ = area of sector $PDS$ - area of triangle $PDS$. Call this area \( \Delta \)

\[\Delta = {1 \over 2}(10)^2 (x - \sin x). \]

By symmetry, there are 4 such equal segments. Hence, the total area of the segments is \(4\Delta.\)

Since the angles subtended by the arcs $PQ$, $QR$, $RS$ and $PS$ are equal, we get chords $L(PQ) = L(QR) = L(RS) = L(PR)$.

We can find $L(PS)$ by applying the cosine rule to triangle $PDS$, \[L(PS)^2 = (10)^2 + (10)^2 - 2(10)^2 \cos x = 2(10)^2(1 - \cos x).\] \[\mbox{Area of square $PQRS$} = L(PS)^2 = 2(10)^2(1 - \cos x).\]

The required area of $PQRS$ = area of 4 segments + area of square $PQRS$.

$$\eqalign{ {\rm Area} &= 200(x - \sin x) + 200(1 - \cos x) \cr &= 200({\pi \over 6} - \sin{\pi \over 6} + 1 - \cos {\pi \over 6}) \cr &= 200({\pi \over 6} - {1\over 2}+ 1 - {\sqrt 3 \over 2})\cr &= 100(1 + {\pi \over 3} - \sqrt 3) \cr &= 31.54 \ {\rm cm^2 (rounded \ to \ 4 \ significant\ figures.)} }.$$

You may also like

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

Get Cross

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

Darts and Kites

Explore the geometry of these dart and kite shapes!

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo