Or search by topic
The largest square which fits into a circle is $ABCD$ and $EFGH$ is a square with $E$ and $F$ on the line $AB$ and $G$ and $H$ on the circumference of the circle. Show that $AB = 5EF$.
Similarly the largest equilateral triangle which fits into a circle is $LMN$ and $PQR$ is an equilateral triangle with $P$ and $Q$ on the line $LM$ and $R$ on the circumference of the circle. Show that $LM = 3PQ$.
Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?
I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?
Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?