Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Fitting In

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Student Solutions

Well done Freddie Manners (Packwood Haugh School) for this solution of the first part of the problem. Perhaps someone else can solve the second part.

If the radius of the circle is $r$, the length of each side of the square $r\sqrt{2}$ (Pythagoras' theorem).

Take a triangle from centre of circle to mid-point $HG$, mid-point $HG$ to $G$, and $G$ to centre. This is a right-angled triangle.

If the length of the sides of the small square is $x$, the sides of this triangle are:

$x/2$, $x + r\sqrt{2}/2$ and $r$.

By pythagoras, \[{({1\over 2}x)^2} + {( {r\sqrt2\over2} + {x})^2} = {r^2} \] \[{x^2\over4} + {2r^2\over4} + {xr\sqrt2} + {x^2} = {r^2} \] \[{x^2} + {2r^2} + {4xr\sqrt2} + {4x^2} = {4r^2} \] \[{5x^2} + {4xr\sqrt2} = {2r^2} \] Substitute $y = r\sqrt{2}$ (length of the side of the large square)

\[{5x^2} + {4xy} = {y^2} \] \[{5x^2} + {4xy} - {y^2} ={ 0} \] \[{x} = {{-4y \pm\sqrt{{(4y)^2} + {20y^2}}}\over 10} \] \[ {x} = {{-4y \pm\sqrt{36y^2}} \over 10} \] \[{x} = {{-4y \pm 6y}\over 10} \] \[ {10x} = {2y or -10y} \]

Ratio must be positive, therefore $10x = 2y$, therefore $y = 5x$
QED

Solution to part B.

Submitted by Samantha Gooneratne, Colombo International School, Sri Lanka. Well done Samantha! Her teacher also solved the problem using similar triangles, which I have include below Samantha's solution.

Let $X$ be the mid point of $PQ$, $C$ the center of the circle and $r$ the radius.

$RX + XC = r$

Hence $PR \sin 60^{\circ}+ CM \cos 60^{\circ}=r$

\[{{\sqrt{3}\over 2}+ {{1 \over2}r} = {r}} \]

Therefore

\[{ {\sqrt{3}.PQ = {r}}} \]

Now

\[{{LM} ={2(r \sin 60)}} \]

so

\[{{LM} ={\sqrt{3}.r}} \] \[{{LM} = {\sqrt{3}.(\sqrt{3}.PQ)}} \] \[{{LM} = {3PQ}} \]

Solution using similar triangles:

$NR$ is a diameter so $NLR = 90^{\circ}$
but $NLM = 60^{\circ}$ so $RLP = 30^{\circ}$
Now $LPR = 120^{\circ}$ so $LRP = 30^{\circ}$
Hence $LP = PR$ but $PR = PQ$
so $LP = PQ = QM$
$LM = 3 PQ$


You may also like

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Russian Cubes

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo