Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Novemberish

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Student Solutions

These solutions, which use quite different methods, are by Ang Zhi Ping from River Valley High School in Singapore, Pierce Geoghegan from Tarbert Comprehensive in Ireland and Mohammad Afzaal Butt. Good work Ang Zhi, Pierce and Mohammad!

Mohammad provided us with this solution to part (a):

Observation 1:

Since $a$ and $b$ are digits, they can be any of $0$, $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$ or $9$. Since $aabb$ is a 4-digit number, $a$ cannot be $0$.

Observation 2:

$0^2 = 0$,
$1^2 =1$,
$2^2 =4$,
$3^2=9$,
$4^2=16$,
$5^2 =25$,
$6^2=36$,
$7^2=49$,
$8^2 =64$ and
$9^2 = 81$

These results tell us that $b$ can only be $0$, $1$, $4$, $5$, $6$ or $9$ because $aabb$ is a perfect square.

Observation 3:

We can write $aabb$ as:
$$ \eqalign { aabb &= 1000a+100a+10b+b \cr &=1100a + 11b \cr &=11(100a+b)} $$Since $aabb$ is a perfect square $100a + b$ must be a multiple of $11$. We can also say that
$$100a + b = 99a + a + b$$ Here $99a$ is divisible by $11$, and $a + b$ must also be divisible by $11$. Since $a$ and $b$ are only single digits, this is only possible if$$a + b = 11$$ Since $b$ can only be $0$, $1$, $4$, $5$, $6$ or $9$ and $a+b=11$, we have that $a$ can be $2$, $5$, $6$ or $7$.

So our possible answers are $2299$, $5566$, $6655$ and $7744$. Of which, only $7744$ is a perfect square, which is the required result.


This solution to part (a) comes from Pierce Geoghegan:

$aabb = a(10^3)+ a(10^2) +b(10) + b = 11(b + 100a).$

Let $aabb = x^2.$ We know $x^2=0\ \rm{(mod\ 11)}$ and that implies $x^2 = 0\ \rm {( mod\ 121)}$ (since $11$ is prime $11^2$ must be a factor of $x^2$ ). So $x^2 = 121y^2$ for some integer $y$ and since $aabb < 10000$ we know $y< 10.$

Testing reveals $y=8$ and $aabb=7744$.

 

These solutions for part (b) use the Remainder Theorem and Modular Arithmetic. Can you prove the result using the Binomial Theorem, or yet another method?

This solution comes from Pierce Geoghegan.


For the second question note:

$11 = 11\ \rm{(mod\ 25)}$ ; $11^2 = -4\ \rm{(mod\ 25)}$ ; $11^3 = -19\ \rm{(mod\ 25)}$ ; $11^4 = 16\ \rm{(mod\ 25)}$ ; $11^5 = 1 \ \rm {( mod\ 25)}$ ... (A)

Now $11^{10}-1=(11^5 + 1)(11^5 - 1)$ and using (A)

$(11^5)- 1 = 0\ \rm {(mod\ 25)}$

Also $11^5 - 1=0\ \rm {(mod\ 2)}$ since $11^5=1\ \rm {(mod\ 2)}$ and $11^5 + 1=0\ \rm {(mod\ 2)}$ since $11^5=1\ \rm {(mod\ 2)}.$

So $(11^5 + 1)(11^5 - 1) = (0\ \rm{(mod\ 2)})(0\ \rm {(mod\ 50)}) = 0\ \rm {(mod\ 100)}.$ QED


This is Ang Zhi Ping's solution.

Let a polynomial $P(x)$ be $x^{10}-1$ . Observe that when $x=1$ , $P(x)$ is reduced to 0, ($1^{10}-1=0$). Hence, $(x-1)$ is a factor of $P(x)$ .

Thus, $11^{10}-1$ can be factorized to $(11-1)Q(x)$ , whereby $Q(x)$ is the quotient. We know by now, $11^{10}-1$ is a multiple of 10. Taking $x^{10}-1=(x-1)Q(x)$ , the quotient $Q(x)$ can be easily evaluated using synthetic division:

$x^{10}-1=(x-1)(x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$

Hence

$Q(x)= (x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1).$

One can see that when $x=1$ , the remainder of $Q(1)=10$ . Thus, $Q(x)=(x-1)R(x)+10$ and $(R(x)$ is another quotient. For $11^{10}-1$ , $P(x)=(x-1)((x-1)R(x)+10)$ which gives $P(11)=(11-1)((11-1)R(x)+10)=10(10R(x)+10)=100(R(x)+1).$

Thus, $11^{10}-1=100(R(x)+1)$ , and hence the number is a multiple of $100$.


You may also like

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Latin Numbers

Can you create a Latin Square from multiples of a six digit number?

2-digit Square

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo