Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

The Better Choice

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem offers an opportunity to explore and discuss two types of probability: experimental and theoretical. The simulation generates lots of experimental data quickly, freeing time to focus on predictions, analysis and justifications.
 

Possible approach

This problem follows on nicely from Cosy Corner

Explain and demonstrate both games by running the interactivities a few times so that students get a feel for the two games, but don't have sufficient results to draw conclusions about the probabilities. Invite students to predict in which game they would expect to win more points, if they played both games the same number of times. 

Allow students time in pairs in which to analyse each game, so that they can decide which is likely to offer them the better chance of winning more points, and emphasise that they will need to be in a position to offer supporting evidence for their decision.

While students are working, circulate and observe the methods being used. Bring the class together and choose individuals who used different methods to explain what they did to the class, recording what they did on the board.

Record their conjectures on the board and then run the interactivity for each game a few hundred times.

Then revisit students' conjectures and discuss which ones matched the experimental data. If no groups had a correct conjecture, then get them to refine their methods in groups, if they can. For the coins, students may count each possible number of heads/tails but not count repeats, for example counting H,H,H,T the same as T,H,H,H. You could guide them around this misconception by having them see four different coins (tails on the 5p is different to tails on the 1p).

For the spinners, the simplest method is to treat the three spinners separately, so that on average, they get two points for every six games for each spinner. Alternatively, students might systematically list the possible ways of getting 0, 2, 4 and 6 points. In this case, the spinners game becomes similar to the coins game, especially if you treat the outcomes as {6} and {not 6}.

Bring the students back again for a discussion about what they changed to improve their methods.

Key questions

How many points do you think you would get if you played 16/6/36/216 times?

What counts as a different outcome?
 

Possible support

This problem could be tackled as a follow-up to Cosy Corner

Teachers may want to use this recording tool to gather the results of other similar experiments that their students are carrying out:

Possible extension

A follow-up problem could be Odds and Evens Made Fair

You may also like

Gambling at Monte Carlo

A man went to Monte Carlo to try and make his fortune. Is his strategy a winning one?

Marbles and Bags

Two bags contain different numbers of red and blue marbles. A marble is removed from one of the bags. The marble is blue. What is the probability that it was removed from bag A?

Coin Tossing Games

You and I play a game involving successive throws of a fair coin. Suppose I pick HH and you pick TH. The coin is thrown repeatedly until we see either two heads in a row (I win) or a tail followed by a head (you win). What is the probability that you win?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo