Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Staircase

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
Ho Chung gives a solution here:

For the first two equations, the answer is the cube root of 3, by observation. You can simply substitute this value in the equation and verify that it is a solution. We have to show that these are the only possible solutions.

What follows is really an argument by contradiction. If we assume that there exists a solution less than the cube root of 3 we reach an impossible situation and likewise for one greater than the cube root of 3.

Define a sequence $(x_n)$ by $x_1=x^3$, $x_{n+1}=x^{x_n}$. Observe that for $x> 1$, if $x^3> 3$ then the sequence is strictly increasing, and if $x^3< 3$ then the sequence is strictly decreasing.

Now to solve $x^{(x^3)}=3$, we are imposing $x_2=3$, so the sequence becomes $x^3$, 3, $x^3, 3, ...$. Since we must have $x> 1$ and the sequence is neither strictly increasing nor strictly decreasing, we must have $x^3=3$. This also clearly works. So $x=\sqrt[3]{3}$.

Similarly, to solve $x^{(x^{(x^3)})}=3$, we have $x_3=3$, so the sequence becomes $x^3$,$x^{(x^3)}$, 3, $x^3, ... $ and so again we have $x=\sqrt[3]{3}$.

For the general equation $$x^{x^{x^{x^{x^{x^{...^{n}}}}}}}=n$$ where the sequence of powers is defined in the same way, and $n$ is a positive integer, we can use the same argument. The solution is the $n$-th root of $n$ if $n$ is odd and when $n$ is even there are two solutions $x=\pm n^{1/n}$.

You may also like

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

Growing

Which is larger: (a) 1.000001^{1000000} or 2? (b) 100^{300} or 300! (i.e.factorial 300)

Climbing Powers

$2\wedge 3\wedge 4$ could be $(2^3)^4$ or $2^{(3^4)}$. Does it make any difference? For both definitions, which is bigger: $r\wedge r\wedge r\wedge r\dots$ where the powers of $r$ go on for ever, or $(r^r)^r$, where $r$ is $\sqrt{2}$?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo