Or search by topic
Harmonic Triangle printable worksheet
This is the start of the harmonic triangle:
\begin{array}{ccccccccccc} & & & & &\frac{1}{1} & & & & & \\ & & & & \frac{1}{2} & & \frac{1}{2} & & & & \\ & & & \frac{1}{3} & &\frac{1}{6} & & \frac{1}{3} & & & \\ & & \frac{1}{4} & &\frac{1}{12} & & \frac{1}{12} & & \frac{1}{4} & & \\
& \frac{1}{5} & & \frac{1}{20} & & \frac{1}{30} & & \frac{1}{20} & & \frac{1}{5} & \\ \frac{1}{6} & & \frac{1}{30} & & \frac{1}{60} & & \frac{1}{60} & & \frac{1}{30} & & \frac{1}{6}\\ & & & & & \ldots& & & & & \end{array}
Look at the triangle above and check that the rule really does work.
Can you work out the next two rows?
The nth row starts with the fraction \frac{1}{n}, so the first diagonal goes:
\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}...
What about the third and fourth diagonals?
Click here for a poster of this problem.
Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?
Which rational numbers cannot be written in the form x + 1/(y + 1/z) where x, y and z are integers?