Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Out in Space

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Thank you to Tarang James of Kerang Technical High School and Andre from Tudor Vianu National College, Romania for your solutions to this problem.

First I shall prove the formula: $$a = v{dv\over dx}\quad (1)$$ I shall write the formula for acceleration ${dv\over dt}$ as $$a = {dv\over dt} = {dv\over dx}.{dx\over dt} = v. {dv\over dx}$$

From the problem, I know that $a = -c/x^2$, as vectors $a$ and $x$ have opposite signs. Using this and relation (1), I obtain: In this example $${dv\over dt} = v.{dv\over dx} = -{c\over x^2}$$ and hence $$\int v dv = \int {-c\over x^2} dx\;,$$ so $${v^2\over 2}= {c\over x} + k$$ and we are given $c=4\times 10^5$, and $v=10$ when $x=10^4$ so $$ k = -40 + 50 = 10.$$ Hence when $v=5$ we have $$12.5 = {c\over x} + 10$$ which gives $x = {4\times 10^5 \over 2.5}= 160,000$. So the space craft moves at $5 \; \text{ km}$ per second when it is $160,000 \; \text{km}$ from the Earth.

I solved the problem in two ways, as above using the relation just proved, and using conservation of energy. The methods are essentially the same and the constant given as $c$ combines the gravitational constant $G$ and the mass of the Earth.

You may also like

It's Only a Minus Sign

Solve these differential equations to see how a minus sign can change the answer

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo