Or search by topic
particle $A \quad \quad$ | $\frac{dx}{dt}=x$ |
particle $B$ | $\frac{dx}{dt}=-x$ |
particle $C \quad \quad$ | $\frac{dv}{dt}=x$ |
particle $D$ | $\frac{dv}{dt}=-x$ |
A circle is inscribed in an equilateral triangle. Smaller circles touch it and the sides of the triangle, the process continuing indefinitely. What is the sum of the areas of all the circles?
$2\wedge 3\wedge 4$ could be $(2^3)^4$ or $2^{(3^4)}$. Does it make any difference? For both definitions, which is bigger: $r\wedge r\wedge r\wedge r\dots$ where the powers of $r$ go on for ever, or $(r^r)^r$, where $r$ is $\sqrt{2}$?