Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

W Mates

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

Thank you for your solutions to John from State College Area High School, Pennsylvania, USA, Andrei Lazanu from School No. 205, Bucharest, Romania, Sarah from Madras College St Andrew's Scotland and Patrick and his friend David Lee Yick Ming from Hkma David Li Kwok Po College, Hong Kong. This is John's solution.

First, I show that for every solution with a magic total $T$ there is a corresponding solution with magic total $30-T$. Consider what would happen if every element $x$ in a solution were replaced with the element $10-x$. All elements from $0$-$9$ would still be used, and all of the rows would have a sum $30$ minus the original total. Since all the row-sums were initially equal, they would still be, but each sum would be $30$ minus the old one, that is $30-T$.

Now I'll find all possible magic arrangements. First, I'll introduce my notation. Call the top centre vertex (occupied by the $2$ in the example picture) $a$. Call the lower left one $b$ (currently $5$). Call the lower right one ($4$) $c$. Arbitrarily, I'll set $b> c$, since solutions that are reflections of each other are considered to be identical.

Now, it is clear that the sum of the totals of all four rows will be equal to $(1+2+3+4+5+6+7+8+9)+a+b+c$, since $a,\ b$, and $c$ are the only elements to appear in all four rows. This simplifies to $45+a+b+c$. If all four rows are equal, the magic total, in terms of $a,\ b$, and $c$, will be $(45+a+b+c)/4$ since there are four rows. For the magic sum to be integral, $(a+b+c)$ must be one less than a multiple of 4. Possible sums for $a+b+c$ are then $3$ ($T=12$), $7$ ($T=13$), $11$ ($T=14$), and $15$ ($T=15$). We need not consider any arrangements with $T> 15$, as they would have corresponding arrangements with $T< 15 $as discussed in the first paragraph. We may also ignore $a+b+c=3$ as values that small cannot be chosen from the integers $1$ through $9$. The possible sums $a+b+c$ are therefore 7, 11, and 15, with $T=13,\ 14$, and $15$ respectively.

We may further narrow the search by eliminating the case $a+b+c=15$. When $a+b+c=15$, the magic sum $T$ also =15. Since $a$ and $b$ appear together in one row, the other number needed to give a sum of 15 in that row is $c$. However $c$ cannot appear in that row as it must appear elsewhere. Therefore $a+b+c=7$ or $11$. Now I'll use a brute force search to find all solutions. All possible arrangements are listed below. I checked each of them to determine if it yielded a Magic W. Those that did have the numbers listed as they appear from left to right in the W. Those that did not are marked only with an 'X'.

For $a+b+c=7,\ T=13$
\begin{eqnarray} % the * suppresses equation numbering (a,b,c)&= \\ % & is the column separator (4,2,1)&\rightarrow &562748139 \\ (2,4,1)&\rightarrow &X \\ (1,4,2)&\rightarrow &X.\\ \end{eqnarray}
For $a+b+c=11,\ T=14$
\begin{eqnarray} (a,b,c)= \\ (8,2,1)\rightarrow 392485167 \\ (7,3,1)\rightarrow 293476158 \\ (6,3,2)\rightarrow X,\ (6,4,1)\rightarrow X,\ (5,4,2)\rightarrow X \\ (4,6,1)\rightarrow X,\ (4,5,2)\rightarrow X,\ (3,7,1)\rightarrow X \\ (3,6,2)\rightarrow 176539248 \\ (2,8,1)\rightarrow X,\ (2,6,3)\rightarrow X \\ (2,5,4)\rightarrow 365728419 \\ (1,8,2)\rightarrow X \ (1,7,3)\rightarrow X \\ (1,6,4)\rightarrow 356719428. \\ \end{eqnarray}
There are $6$ solutions with $T< 15$, and therefore $6$ corresponding ones with $T> 15$, for a total of twelve. All are listed below:

$T=13$ $562748139$
$T=14$ $392485167$, $293476158$, $176539248$, $365728419$, $356719428$
$T=16$ $718625943$, $817634952$, $934571862$, $745382691$, $754391682$
$T=17$ $548362971$

You may also like

Instant Insanity

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Network Trees

Explore some of the different types of network, and prove a result about network trees.

Magic Caterpillars

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo