Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Mixing More Paints

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Mixing More Paints printable worksheet


This problem follows on from Mixing Paints.
 
A decorator can buy blue paint from two manufacturers.

  • Paint A is made up from dark blue and white paint in the ratio $1:4$
  • Paint B is made up from dark blue and white paint in the ratio $1:5$


She can mix the paints to produce different shades of blue.

What is the least number she would need of each type in order to produce blue paint containing dark blue and white in the following ratios:

$2:9$
$3:14$
$10:43$
 

You may wish to experiment with the interactivity below.


Another decorator buys blue paint from two different manufacturers:
  • Paint C is made up from dark blue and white paint in the ratio $1:3$
  • Paint D is made up from dark blue and white paint in the ratio $1:7$
What is the least number she would need of each type in order to produce blue paint containing dark blue and white in the following ratios:
 
$2:9$
$3:14$
$10:43$


Is it always possible to combine two paints made up in the ratios $1:x$ and $1:y$ and turn them into paint made up in the ratio $a:b$ ? Experiment with a few more examples.

Can you describe an efficient way of doing this?

You may also like

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo