Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Mixing More Paints

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Why do this problem?


This problem follows on from Mixing Paints and encourages students to think about ratio in new ways, explore using an interactive environment, and come up with some generalisations and proofs. The most general case will require perseverance to discover and prove.

 

Possible approach

This printable worksheet may be useful: Mixing More Paints

This problem could be used in a follow-up lesson after working on Mixing Paints, or as an extension activity for some students.

Students could start by using the interactivity to experiment, and then gradually move to pen-and-paper methods, only using the interactivity to check.

 

Key questions

If I am mixing $1:4$ paint with $1:5$ paint, why might it be useful to start with 30 litres of paint?
If I want to mix $1:x$ paint with $1:y$ paint, what would I start with instead of 30 litres?

 

Possible support

Make sure students are secure in any general strategies they came up with for Mixing Paints before embarking on this task.

 

Possible extension

Coming up with a general strategy for making any ratio from any paint is a challenging extension task.

 

 

 

 

 

You may also like

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo