Or search by topic
Present the problem, give students an opportunity to share first ideas. Several approaches (working backwards, trial and error, building up from smaller ones, systematic searching) might be suggested, and advantages/disadvantages discussed.
Encourage students to compare results with peers, and to resolve discrepancies without relying on the teacher's spreadsheet (see below). It might be useful to gather the results of the students as they work, to help them to see patterns and encourage them to conjecture what the results will be for other rectangles.
How might you organise a search for rectangles with exactly $100$ squares?
Consider rectangles with a height of $2$ units, and increase their width by $1$ unit at a time.
What effect does this have on the total number of squares?
Can a rectangle with a height of $2$ units contain exactly $100$ squares?
What about rectangles with a height of $3, 4, 5, \ldots$?
Encourage students to start by considering rectangles with a height of $2$ units, increase their width by $1$ unit at a time, and in a table, record the number of squares in different rectangles with a height of $2$ units.
Do they notice anything special?
Encourage them to use their results to decide whether a rectangle with a height of $2$ units can contain exactly $100$ squares.
What about rectangles with a height of $3, 4, 5, \ldots$?
Can you work out the area of the inner square and give an explanation of how you did it?
With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.