Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Symmetric Trace

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Before we begin we need to check something - it's about symmetry.

A pattern continues forever in both directions.

Imagine it's on a roll of paper and two strips are torn off, one of which is turned upside-down and placed underneath the other.

It is not possible to shift the lower strip horizontally so that it lines up and matches the upper strip.




On the other hand for the next pattern. . .



Even with the second piece upside-down the two pieces can still be made to line up and match.

Now to start the real problem.

This problem is about that kind of symmetry.

The pattern is a trace from a point on a rolling wheel.

Before starting, you may find it useful to explore How far does it move? .

A wheel rolls along a horizontal track and leaves traces from two different points.

Point 1 is on the circumference of the wheel and its trace looks like this:

Trace One

Trace One

Forget the wheel for a moment and just concentrate on the trace pattern.

If this trace was turned upside-down you would certainly not be able to line it up with itself.

Point 2 is somewhere inside the wheel and its trace looks like this :

Trace Two

Trace Two

Would "Trace Two" line up with itself upside-down?

Justify your answer, if you can.

The third trace is made where a horizontal line from Point 1 intersects with a vertical line through the centre of the wheel. It looks like this :

Trace Three

Trace Three

Can "Trace Three" line up with itself upside-down?

Justify your answer this time.

You may also like

Just Rolling Round

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Roaming Rhombus

We have four rods of equal lengths hinged at their endpoints to form a rhombus ABCD. Keeping AB fixed we allow CD to take all possible positions in the plane. What is the locus (or path) of the point D?

Triangles and Petals

An equilateral triangle rotates around regular polygons and produces an outline like a flower. What are the perimeters of the different flowers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo