Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Over-booking

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Let $S$ be the number of seats in the aircraft;
$T$ be the number of tickets sold;
$p$ be the probability that any given passenger arrives for the flight.

Let $X$ be the number of passengers that arrrive for a given flight.

Then $X$ has the Binomial distribution for $T$ trials with the probability of success $0.95$. You can calculate the mean $\mu$ and variance $\sigma^2$ for this distribution.

In order to avoid lengthy calculations in the discrete case we approximate the Binomial distribution by a Normal distribution with the same mean and variance, i.e. by $$N(\mu,\sigma^2)$$

Thus we now assume that $X$ has distribution $N(\mu,\sigma^2)$. In order to use the standard Normal probability tables $N(0,1)$ we have to put $$Y = {X-\mu\over \sigma}$$ then $Y$ has distribution $N(0,1)$.

So as to allow for the approximation to the discrete data by the continuous Normal distribution, we want to find $\text{Prob}[X\leq 400.5$] and look up the probability for the corresponding value of $Y$ in the Normal table.

If you use a Normal distribution table you need to check to see if it gives the area $\Phi(Y)$ under the Normal curve to the left of $Y$, that is the probability that the variable is less than $Y$, or to the right of $Y$.

You may also like

Statistics - Maths of Real Life

This pilot collection of resources is designed to introduce key statistical ideas and help students to deepen their understanding.

Binomial Conditions

When is an experiment described by the binomial distribution? Why do we need both the condition about independence and the one about constant probability?

Binomial or Not?

Are these scenarios described by the binomial distribution?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo