Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Over-booking

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Andrei fromTudor Vianu National College, Romania, gives a very clear account of the use of the binomial and normal distributions to solve this problem.

The passengers who have bought tickets either turn up for the flight or do not turn up. Taking $X$ as the random variable for the number of passengers who turn up for the flight, then $X$ is binomially distributed with parameters $p$, the probability of arriving for the flight, and $n$ as the number of tickets sold. The probability distribution is: $$P(x;n,p)= {n \choose x}p^x(1-p)^{n-x},\ x=0,1,...,n.$$ The mean of the distribution is $E(x)=np$ and the variance $\sigma ^2 ={np(1-p)}.$

In this problem $n=400$ and $p=0.95$.

So, $E(X)=380$ and $\sigma = 4.36$ and the expected number of empty seats is $20$.

It is known that, if the value of $n$ is large, the variable $X$ could be considered to have a probability distribution that approximates to the standard normal distribution, with the same mean and variance. \par To verify that the normal distribution could be, in the conditions of the problem, a good approximation for the binomial distribution, I have to verify that both the mean $\mu =np$ and the variance $\sigma^2 = n(1-p)$ are greater than 5. Here $np=380$ and $n(1- p)=20$. So, the use of the normal distribution is acceptable.

Using the applet at http://davidmlane.com/hyperstat/z_table.html , I tried to find the number of tickets, $x$, that the airline should sell to satisfy the conditions of the problem.

Let $x$ be the number of tickets sold, which, as explained before, could be considered to have a normal distribution $N(\mu,\sigma^2)$. The mean of the distribution is $x\times 0.95$, and the standard deviation is $\sqrt{x\times 0.95\times 0.05}$. The area under the curve and below $400$ is $98$ per cent or $0.98$ and the area above $400$ is $2$ per cent or $0.02$ (the probability that too many passengers will turn up for the flight).

Trying for some values of $x$ I obtained the number of tickets that the airline must sell. Put $$y = {x-np\over \sqrt{np(1-p)}};$$ then $y$ has distribution $N(0,1)$. The probability that all passengers who arrive for the flight can actually get a seat is ${\rm Prob}\{x \leq 400.5\}$ (because $x=400$ is fine, but $x=401$ is not). Thus $${\rm Prob}\{x \leq 400.5\} = {\rm Prob}\left\{y\leq {400.5-np\over \sqrt{np(1-p)}}\right\}$$ and this can now be found from tables of the normal distribution.

We find that if $411$ tickets are sold then the probability of too many passengers arriving is less than $2$ percent but for $412$ it is more than $2$ percent so the ideal number of tickets to be sold is $411$.

You may also like

Statistics - Maths of Real Life

This pilot collection of resources is designed to introduce key statistical ideas and help students to deepen their understanding.

Binomial Conditions

When is an experiment described by the binomial distribution? Why do we need both the condition about independence and the one about constant probability?

Binomial or Not?

Are these scenarios described by the binomial distribution?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo