Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Always Two

Age 14 to 18
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources


Three numbers, $a, b$ and $c$, have the property that when we multiply two of them together and then add the third one we always get the answer $2$.

Can you write down three equations that $a, b$ and $c$ satisfy?
Click on the button below to reveal the three equations that Claire wrote down.


$$ab+c=2\\ bc+a=2\\ca+b=2$$
 

 

Use two of your equations to show that: $$(b-1)(a-c)=0$$


You could start by subtracting one equation from another.
Alternatively, all of the equations are equal to $2$, so you could put two of the left hand sides equal to each other.
You should be able to find a common factor of $(a-c)$.
 

 

If we have $(b-1)(a-c)=0$, then what are the two cases that we must consider?


If you know that $(x-2)(x-3)=0$, then you can conclude that either $x-2=0$ or $x-3=0$. What are the two different cases for $(b-1)(a-c)=0$?
 

 


If $(b-1)(a-c)=0$, then we must have either $b=1$ or $a=c$.
 

 

Use one of your cases to reduce the original set of three equations to a set of two equations in two unknowns. Solve these to find one or more possible sets of solutions to the original problem. Repeat with the other case!  There is more help available with this step in the getting started section.

Extension

Can you find all the possible values of $a, b$ and $c$ in these cases:

1.  Three numbers, $a, b$ and $c$, have the property that when we multiply two of them together and then add the third one we always get the answer $6$.

2.  Three numbers, $a, b$ and $c$, have the property that when we multiply two of them together and then subtract the third one we always get the answer $2$.

Further extension

Can you solve the general case where if you multiply two of the numbers together and then add the third you always get the value $k$?

You may also like

Real(ly) Numbers

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

Overturning Fracsum

Can you solve the system of equations to find the values of x, y and z?

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo