Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Always Two

Age 14 to 18
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Well done to Nishad from Thomas Estley Community College in England, who sent in this full solution to the main problem:

Firstly we get that the equations are:

$ab+c=2$
$ac+b=2$
$bc+a=2$


Now notice that $$(ba+c)-(bc+a)=2-2 \Rightarrow b(a-c)-(a-c)=0 \Rightarrow (b-1)(a-c)=0$$
This gives us 2 cases namely $b=1$ or $a=c$

Case 1: $b=1$

We can substitute this into the original equations that we had 
$a+c=2 \Rightarrow c=2-a$
$ac=1$
Hence
$a(2-a)=1 \Rightarrow 0=a^2 -2a +1 = (a-1)^2$

This gives us the solutions $a=1$,$c=1$

Hence 1 set of solutions $(a,b,c)$ is 
$(1,1,1)$

Case 2: $a=c$

We can substitute this into the original equations that we had 
$ab+a=2 \Rightarrow b=\frac{2}{a}-1$
$a^2+b=2$
Hence
$a^2 + \frac{2}{a}-1 = 2 \Rightarrow a^{3} - 3a +2 = 0$

Since $a=1$ is a root of the equation $(a-1)$ is a factor

$a^3 -3a +2 = (a-1)(a^2+a-2) = (a-1)(a-1)(a+2) = 0$

Using $a=1$ gives us the same set of solutions as before but $a=-2$ gives us a new set, namely 
$(-2,-2,-2)$

Nayanika from The Tiffin Girls' School in the UK began the first part of the extension:

Here, it should say $ac+1=6,$ so $c(6-c) +1 = 6c-c^2+1=6,$ therefore $c^2-6c+5=0.$ From here, Clare continued:

$c^2-6c+5=0\Rightarrow (c-1)(c-5)=0$ so $c=1$ or $c=5.$
$a+c=6,$ so $a$ is the other out of $1$ and $5.$
This means $a,b,c$ are $1,1,5$ (in any order).

Case 2 - $a=c$
Now $ab+a=6$ and $a^2+b=6,$ so $b=6-a^2$
Therefore $a(6-a^2)+a=6\Rightarrow 6a-a^3+a=6 \Rightarrow a^3-7a+6=0$
We can see that $a=1$ is a solution (and this is not a surprise because we already know $b$ could be $5$ and $a$ and $c$ could both be $1$), so $a-1$ will be a factor:
$a^3-7a+6=(a-1)(a^2+a-6)=(a-1)(a+3)(a-2)=0$
Therefore $a=c$ could also be $-3$ or $2.$

If $a=c=-3,$ then $ac+b=6$ becomes $9+b=6$ so $b=-3$ as well. This will clearly work for all of the equations.
If $a=c=2,$ then $ac+b=6$ becomes $2+b=6$ so $b=2$ as well.

Therefore $a,b,c$ could be $1,1,5$ or $2,2,2$ or $-3,-3,-3.$

For the second part of the extension, Mattia wrote:

Nishad completed the extension by beginning with the further extension:

$ab+c=k$
$ac+b=k$
$bc+a=k$


Now notice that 
$(ba+c)-(bc+a)=k-k \Rightarrow b(a-c)-(a-c)=0 \Rightarrow (b-1)(a-c)=0$ so we get the same equation in the general case

Case 1: $b=1$

We can substitute this into the original equations that we had 
$a+c=k \Rightarrow c=k-a$
$ac=k-1$
Hence
$a(k-a)=k-1 \Rightarrow 0=a^2 -ka +k-1 = (a-1)(a-(k-1))$

This gives us the solutions $a=1$, $c=k-1$ (and $a=k-1$,$c=1$)

Hence 1 set of solutions $(a,b,c)$ is 
$(1,1,(k-1))$
but due to the symmetry of the problem all 3 permutations of this set are solutions, namely $((k-1),1,1)$, $(1,(k-1),1)$ as well.

Case 2: $a=c$

We can substitute this into the original equations that we had 
$ab+a=k \Rightarrow b=\frac{k}{a}-1$
$a^2+b=k$
Hence
$a^2 + \frac{k}{a}-1 = k \Rightarrow a^3 - (k+1)a +k = 0$

Since $a=1$ is a root of the equation $(a-1)$ is a factor
$a^3 -(k+1)a +k = (a-1)(a^2+a-k) = (a-1)(a-\phi)(a+(\phi+1)) = 0$ for some $\phi,$ where
$\phi (\phi +1) =k \Rightarrow \phi^2+\phi-k$
$\phi = \frac{-1+\sqrt{4k+1}}{2}$
$-(\phi +1) = \frac{-1-\sqrt{4k+1}}{2}$

Now we have new 2 new sets of solutions

When $a=\frac{-1+\sqrt{4k+1}}{2}$ gives us the set of solutions $$\left(
\frac{-1+\sqrt{4k+1}}{2},\frac{-1+\sqrt{4k+1}}{2},\frac{-1+\sqrt{4k+1}}{2}
\right)$$

When $a=\frac{-1 -\sqrt{4k+1}}{2}$ gives us the set of solutions 
$$\left(
\frac{-1-\sqrt{4k+1}}{2},\frac{-1-\sqrt{4k+1}}{2},\frac{-1-\sqrt{4k+1}}{2}
\right)$$

Remark: To find $b$ we could substitute the value of $a$ into 
$b=\frac{k}{a} - 1$
For the case where $a=\frac{-1+\sqrt{4k+1}}{2}$:
$$\begin{split}b&= \frac{2k}{-1+\sqrt{4k+1}} -1\\
&=\frac{2k+1-\sqrt{4k+1}}{-1+\sqrt{4k+1}}\\&=\frac{2k+1-\sqrt{4k+1}}{-1+\sqrt{4k+1}} \times
\frac{1+\sqrt{4k+1}}{1+\sqrt{4k+1}}\\ &=
\frac{2k+1-\sqrt{4k+1}+(2k+1)\sqrt{4k+1} -4k-1}{4k+1-1}\\&=\frac{-2k-\sqrt{4k+1}+(2k+1)\sqrt{4k+1}}{4k}\\& =\frac{-2k+2k\sqrt{4k+1}}{4k}\\& = \frac{-1+\sqrt{4k+1}}{2} \\&= a\end{split}$$
Which is why in fact $a=b=c$ (A very similar rationalizing of the denominator works for the case where $a=\frac{-1-\sqrt{4k+1}}{2}$) 

Extension 1:

After having done the further extension for the general case we can substitute in $k=6$ to get the sets $(5,1,1)$ (and its permutations), $(2,2,2)$, $(-3,-3,-3)$

Extension 2:

$ab-c=2$
$ac-b=2$
$bc-a=2$

Now notice that 
$(ba-c)-(bc-a)=2-2 \Rightarrow b(a-c)+(a-c)=0 \Rightarrow (b+1)(a-c)=0$

This gives us 2 cases namely $b=-1$ or $a=c$

Case 1: $b=-1$

We can substitute this into the original equations that we had 
$-a-c=2 \Rightarrow c=-2-a$
$ac=1$
Hence
$a(-2-a)=1 \Rightarrow 0=a^2 +2a +1 = (a+1)^2$

This gives us the solutions $a=-1$, $c=-1$

Hence 1 set of solutions $(a,b,c)$ is 
$(-1,-1,-1)$

Case 2: $a=c$

We can substitute this into the original equations that we had 
$ab-a=2 \Rightarrow b=\frac{2}{a}+1$
$a^2-b=2$
Hence
$a^2 - \frac{2}{a}-1 = 2 \Rightarrow a^{3} - 3a -2 = 0$

Since $a=-1$ is a root of the equation $(a+1)$ is a factor

$a^3 -3a -2 = (a+1)(a^2-a-2) = (a+1)(a+1)(a+2) = 0$

Using $a=-1$ gives us the same set of solutions as before but $a=2$ gives
us a new set, namely $(2,2,2)$

 

You may also like

Real(ly) Numbers

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

Overturning Fracsum

Can you solve the system of equations to find the values of x, y and z?

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo