Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

There's Always One Isn't There

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

A number of people spotted that you cannot get a remainder of one if the two numbers you use have a common factor.

For example : 8 and 6 have 2 as a common factor.

Look at the multiples of 8 :

8, 16, 24, 32, 40, 48

And the remainders when we divide by 6 :

2, 4, 0, 2, 4, 0

Eight and six are both made from twos so taking away sixes is like taking away three twos from a collection of twos, and what's left over must be some twos! (or nothing at all)

OK, so if there's a common factor the remainder can never be one, but if the numbers don't have any common factor (coprime) does that mean there will always be a remainder of one somewhere ?


Dominic from St Paul's School says Yes :

If the numbers are a and b, and coprime, then ab is their lowest common multiple, the smallest multiple of a that is also a multiple of b.

The remainders, upon division by b, could be written $r_1, r_2, . . . . . , r_{b-1}$

Dominic is about to show that no two values from that set of remainders can be the same.

Just suppose two of the remainders, $r_k$ and $r_l$, were actually the same (with k< l, ie. k comes first).

Suppose that the remainder value when this happens is R then there is some integer value n

and another one, m, so that :

ka = nb + R and

la = mb + R

n is the number of times b goes into ka, and m is the number of times that b goes into la,

with R left as the remainder each time .

It follows, with that R the same in each expression, that la - ka = mb - nb

or (l - k) a = (m - n) b

and that would make (l - k)a divisible by b

However l - k is an integer value somewhere between 1 and b - 2 and we already know that ab is the smallest multiple of a that is divisible by b, so there is no l - k value to make (l - k)a divisible by b.

The conclusion is that no two remainders can be the same - they must all be different

And since there are b - 1 remainders, which have to take one of the values: 1,2,3...(b-1), and all be a different value, it follows that one of the remainders will be 1, which is what we wanted to prove.


Thank-you Dominic that's nice reasoning

You may also like

N000ughty Thoughts

How many noughts are at the end of these giant numbers?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Mod 3

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo