Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Helen's Conjecture

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions

It is often easier to disprove a conjecture than to try and prove it to be true. You have but to find the exception to the conjecture. We received only one contribution disproving the conjecture and that was the work of Tim from Gravesend Grammar School for Boys in Gravesend, Kent. His work is quite detailed and is as follows:

A computer search showed that this is not true: the first example is 1002, which is 167*6, has eight factors (1, 2, 3, 6, 167, 334, 501, 1002) and 1001 also has eight factors (1, 7, 11, 13, 77, 91, 143, 1001). The next example is 1086 and 1085, and after that 1266 and 1275. The first example where an adjacent number has more factors than the multiple of six is 2274, which has 8 factors, and 2275, which has 12 factors. The number 6546 has 8 factors, while 6545 has 16.

You may also like

First Forward Into Logo 1: Square Five

A Short introduction to using Logo. This is the first in a twelve part series.

First Forward Into Logo 10: Count up - Count Down

What happens when a procedure calls itself?

First Forward Into Logo 2: Polygons

This is the second in a twelve part introduction to Logo for beginners. In this part you learn to draw polygons.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo