Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Odd Differences

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Why do this problem :

This connection between the set of odd numbers and squares is not often encountered in school and offers a very accessible example of visualisation.

The 'difference of two squares' is a key algebraic transformation and problems like this can lead students into a deeper appreciation of that form through a further visualisation.

Possible approach :

Start by giving learners time to make sense of the idea that any odd number can be written as the difference of two squares using the dotty grid. Encourage them to investigate with small numbers (for example, $9=5^2 - 4^2$ ) before generalising for larger numbers such as $1155$ and then devising a general rule for anyone to apply.

Remind them of the identity $a^2 - b^2 = (a + b)(a -b)$ and give them time to consider and see the connection with what they have already done. For example: $$9=5^2 - 4^2 = (5+4)(5-4).$$

At this point another visualisation might be useful in order to suggest how further differences might be found.

The problem of writing the number $105$ as the difference of two squares becomes a problem about factor pairs that make a product of $105$.

Draw out from the students how this transformation helps [we now seek factors of $105$ rather than guessing squares and calculating differences].

Moving to the last part, and even pushing beyond that to a general result, may require the group to spend time making sure that they are secure with an algorithm for producing prime factors.

Key questions :

  • Explain how this image shows us the sum of the first n odd numbers - what is that sum ?
  • For $105$ (and then for $1155$) how many ways might there be, and why do you think that ?

Possible extension :

Is it true that no number can be written as the difference of $2$ squares in exactly three ways, and if so why?

Possible support :

Perhaps try the problem Plus Minus first.
For students not yet ready for this problem, time spent on finding factors will be valuable. When the group are ready, check that they can use an algorithm to find prime factors and invite them to suggest how they can use that to assist factor-finding.



You may also like

Triangular Triples

Show that 8778, 10296 and 13530 are three triangular numbers and that they form a Pythagorean triple.

Iff

Take a triangular number, multiply it by 8 and add 1. What is special about your answer? Can you prove it?

Smith and Jones

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo