Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Lattice Points

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Complete solutions were sent in by Ruth from Manchester High School for Girls, by Ben who did not name his school and by Andrei from Tudor Vianu National College, Romania.

This is Ben's solution to the first part:

Suppose $(x_1, y_1)$ is a point on the parabola $y = ax^2$ where $x_1$ and $y_1$ are integers, that is $y_1=ax_1^2$. Then, if $n$ is an integer, $nx_1$ and $n^2$ are also integers and so $$a(nx_1)^2 = n^2(ax_1^2)= n^2y_1.$$ So $(nx_1, n^2y_1)$ is another solution with integer coordinates. As $n$ can take an infinite number of integer values, if there is at least one lattice point solution, there are an infinite number.

This is Ruth's solution to the second part:

On the hyperbola $x^2 -y^2 = 84 = (x+y)(x-y)$, for $x$ and $y$ to be integers, $(x+y)$ and $(x-y)$ have to be the same parity because $(x+y)+(x-y)=2x$ and, for the total of two numbers to be even, they either have to be both odd or both even.

As $(x+y)(x-y)=84$ at least one bracket has to be even. As we require diophantine solutions, both brackets must be even. The only factorisations of 84 into two even numbers are: $$84=2\times 42 = 42 \times 2 = -2\times -42 = -42 \times -2 = 6\times 14 = 14\times 6 = -6\times -14 = -14\times -6.$$ Each of these gives a distinct solution so the 8 solutions are $x= \pm 22, y=\pm 20$ (4 solutions) and $x=\pm 10, y=\pm 4$ ( 4 solutions).

There are two lattice points on the hyperbola in the first quadrant: (10,4) and (22,20). The lattice points (10, -4) and (22, -20) are the reflections of these points in the $x$-axis. Also $x\geq \sqrt 84$ or $x\leq -\sqrt 84$ so there are two branches of the hyperbola. The other four lattice points lie on the other branch of the hyperbola and are the reflections of these four points in the $y$-axis.

You may also like

Shades of Fermat's Last Theorem

The familiar Pythagorean 3-4-5 triple gives one solution to (x-1)^n + x^n = (x+1)^n so what about other solutions for x an integer and n= 2, 3, 4 or 5?

Upsetting Pitagoras

Find the smallest integer solution to the equation 1/x^2 + 1/y^2 = 1/z^2

BT.. Eat Your Heart Out

If the last four digits of my phone number are placed in front of the remaining three you get one more than twice my number! What is it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo