Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Equal Temperament

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Thank-you Julian from Wilson's School for this clear explanation :

Consider the chromatic scale with $12$ equal intervals, starting with one note (for example C) and ending with the same note, but an octave above (so C again). We are told that the ratio between each of the notes is the same, and we were told in the previous problems that any note an octave above will be $1/2$ the note one octave below.

Let's use the value $2$ for the bottom note of our scale, so the octave above will be $1$.

We know that there are $12$ equal ratios in between these two in the scale, so to evaluate the note $n$ steps lower on the chromatic scale from any position we use the expression $2^\frac{n}{12}$ . This means take the twelfth root of $2$, which gives the multiplier for one step, and raise it to the power of $n$ to find the multiplier for n steps.

For example, with the bottom note: $2^\frac{12}{12} = 2 $

And with the top note: $2^\frac{0}{12} = 1 $

Therefore, to find out the interval of a fifth, which misleadingly has 7 equal ratios (or semitones), we work out: $2^\frac{7}{12} = 1.498307\ldots $

A perfect ratio of $3:2$ would give the note $1.5$

Therefore, the interval of a fifth is less than $3:2$ by $0.0016929231 (10\text{dp})$

You may also like

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

Root to Poly

Find the polynomial p(x) with integer coefficients such that one solution of the equation p(x)=0 is $1+\sqrt 2+\sqrt 3$.

Consecutive Squares

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo