Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage
Age 7 to 14
Article by Bernard Bagnall

Published 2007 Revised 2018

Digital Roots


Digital roots usually first appear - though not by name - when children discover the fascinating things about the results in the 9 times table. They often notice that when the digits of each multiple (9, 18, 27, 36, 45, 54 etc.) are added together they come to 9. Pupils can be encouraged to extend the 9 times table further and so they might look at 135 558 etc. Some discussion is usually needed when the digits add up to 18 or another multiple of 9 rather than just 9 itself - as is the case for 558, 8883. In these cases the sum is considered as a number in itself and its digits added to make 9. Some pupils really enjoy checking big numbers in this way to see if they are multiples of 9, like the year in which they are born (1998 for example).

The general use of digital roots just extends that idea to any number - but does not necessarily imply anything special about multiples. So to obtain the digital root of a number we simply add the digits, and continue to do so until we are left with a single digit. For example:
1 244 > 11 > 2 so the digital root of 1 244 is 2
24 675 > 24 > 6 so the digital root of 24 675 is 6

Pupils therefore often discover that, when they have to obtain the digital root of a large number, they only need to count one out of all the 9's it contains. For example:
If we take the number 4 569 512 597 853, losing one of the two 9s gives you 456 951 257 853.
Then you can do the same with numbers that add to 9 [as we know that when added to the 9 we have kept, the resulting sum will be a multiple of 9 and will therefore have a digital root of 9]. So in the number we have now, we can also lose 4&5, 6&3, 1&8, 2&7 which leaves 9 555.
Now we can find the digital root of 9 555 quite easily: 9+5+5+5=24, then 2+4=6.
That's nice - no big additions to do to get the digital root of 4 569 512 597 853 to be 6!

When you have a sequence of numbers that occur in any investigation, challenge or exploration then finding their digital roots nearly always gives some excitement. The Big Cheese and Sending and Receiving Cards are good examples of problems where finding digital roots might be productive, as well as some other investigations on the website. The notes of these problems give further details.

[We might introduce some pupils at a higher level to modular arithmetic (sometimes known as 'clock' arithmetic) and modulo 9 is equivalent to digital roots. You might find the article Modular Arithmetic useful.]


Here is a PDF version of this article.

You may also like

Counter Ideas

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Seven Squares - Group-worthy Task

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo