Or search by topic
n | 3^n unit | 7^n unit | Sum end in 0? |
1 | 3 | 7 | Y |
2 | 9 | 9 | N |
3 | 7 | 3 | Y |
4 | 1 | 1 | N |
5 | 3 | 7 | Y |
6 | 9 | 9 | N |
7 | 7 | 3 | Y |
Find S_r = 1^r + 2^r + 3^r + ... + n^r where r is any fixed positive integer in terms of S_1, S_2, ... S_{r-1}.
2\wedge 3\wedge 4 could be (2^3)^4 or 2^{(3^4)}. Does it make any difference? For both definitions, which is bigger: r\wedge r\wedge r\wedge r\dots where the powers of r go on for ever, or (r^r)^r, where r is \sqrt{2}?