Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Factor-multiple Chains

Age 7 to 11
Challenge Level Yellow starYellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Factor-multiple Chains


Here is an example of a factor-multiple chain of four numbers:

3-6-30-90

Can you see how it works? Perhaps you could make some statements about some of the numbers in the chain using the words "factor" and "multiple".

In these chains, each blue number can range from $2$ up to $100$ and must be a whole number.

You may like to experiment with this spreadsheet which allows you to enter numbers in each box. Perhaps you can make some more chains for yourself.

What are the smallest blue numbers that will make a complete chain?
What are the largest blue numbers that will make a complete chain?
What numbers cannot appear in any chain?
What is the biggest difference possible between two adjacent blue numbers?
What is the largest and the smallest possible range of a complete chain? (The range is the difference between the largest and smallest values.)

 

Why do this problem?

This problem offers opportunities to reinforce pupils' understanding of factors and multiples. They will become confident in using this vocabulary. It also gives them the chance to justify their solutions and to be creative by making their own chains.

Possible approach

You may wish to show this spreadsheet to the whole class to introduce the problem. It is an interactive chain, which allows you to enter numbers in each box, giving feedback as to when factors and multiples occur. As you make different chains, ask the children to explain what is happening so that everyone fully understands the environment.

Encourage pupils to work on the different questions, ideally in pairs so that they have somone with whom to discuss their ideas. They could work on paper or mini-whiteboards, and access to calculators might be useful. You might like the class to be at computers so they can manipulate the spreadsheet themselves and check their solutions. You may have to discuss what is meant by 'largest' and 'smallest', and come to an agreement. You could ask two questions, for example 'What are the largest blue numbers that will make a complete chain?' and 'What is the largest possible first number in a chain?'.

When sharing solutions, encourage learners to justify their answers - how do they know that their chain contains the smallest/largest numbers etc.? Some children will be using trial and improvement, some will have developed a system for trying numbers in turn, and others may have been able to combine these with their knowledge of number properties.

Key questions

Can any number start the chain? Why/why not?
Can any number be at the end of a chain? Why/why not?
What can you say about the numbers in the second and third positions in a chain?
How will you keep track of what you have tried?

Possible extension

Children could investigate what would happen if the chain was made up of more than four numbers, or made up from a different range of numbers.

Possible support

Enabling learners to manipulate the spreadsheet for themselves will help them access this problem and you can focus on justifying the solutions rather than pupils worrying about obtaining them. There is still a great deal of mathematical thinking taking place as children interact with the spreadsheet.


You may also like

Doplication

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Round and Round the Circle

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Making Cuboids

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo