Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

A Chance to Win?

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem improves students’ fluency in calculating proportion/percentage increases and decreases, and could be used to encourage students to use multiplicative methods rather than additive methods. It is also an opportunity for students to develop reasoning and mathematical arguments which explore and exploit the commutative property of multiplication.

There is the possibility of investigating novel equations with unknowns as powers.

 

Possible approach

This printable worksheet may be useful: A Chance to Win

We might begin by asking students to guess solutions, possibly prompted by questions such as ‘is it better to win early on?’ We could note any conjectures on the main whiteboard.

Next, students to try ordering the cards and calculate their winnings in pairs or small groups. Encourage them to record their findings logically. You could hand out manipulatives to represent the red and black cards.

Ask students to present their best sequence of cards. This is a chance for them to describe their thinking, including how it was guided by the initial conjectures. It will also ensure that everyone has understood the task and could showcase a variety of methods for calculating the final winnings.

The final winnings should be the same for every sequence presented, so you could challenge the students to find an order which gives a different total. If they can’t, why not? Once they’ve had a chance to develop their reasoning in small groups, you could have a class discussion about why the order of the cards will not affect the final winnings.

Next introduce the idea of additional winning cards. Some students might want some time to check that their conclusions still hold true. Others may be ready to immediately tackle the questions ‘how many winning cards do I need to make the game profitable?’, or ‘what happens it there is 1 losing card and $n$ winning cards?’. You could suggest that the students use a table to record their results.

You could bring the class together at the end to present and discuss their conclusions.

 

Key questions

Can you calculate your winnings for a particular sequence?

Do you notice anything about your results? Can you explain why this is?

How many winning cards do you need to make the game profitable?

How many winning cards do you need to ‘undo’ the effect of a losing card?

 

Possible support

To lead students towards seeing that the order of the cards does not matter, students might be provided with a table of suggested orders, and space to write their winnings. Calculators could be used if students are struggling numerically.

To help students express finding proportions/fractions/percentages as multiplication, you could use https://nrich.maths.org/2877 and/or https://nrich.maths.org/2877.

It is possible students will struggle with the concept of a ‘stake’; this might be illustrated through an example sequence of cards, or by first introducing a simpler game.

 

Possible extension

Win or Lose uses similar concepts. Students could also consider what happens if they are allowed to choose the amount they bet, or if they are given different odds on winning.
 

You may also like

Tweedle Dum and Tweedle Dee

Two brothers were left some money, amounting to an exact number of pounds, to divide between them. DEE undertook the division. "But your heap is larger than mine!" cried DUM...

Sum Equals Product

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so for any whole numbers?

Special Sums and Products

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo