Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

A Chance to Win?

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Tim explained clearly why you can never win:

It doesn't matter what order you play the cards!
Each black card makes you lose half your money - which is the same as multiplying what you have by 0.5.
Each red card multiplies what you have by 1.5 since you win half of the cash you have.

As there are 3 reds and 3 blacks, the total amount you will finish with will be:
"starting amount" x 0.5 x 0.5 x 0.5 x 1.5 x 1.5 x 1.5 = starting amount x 0.42 (approx).

Since you can multiply in any order, you will always end up with the same amount! ( £54)

Charlie, Gemma, Griselda, Tom, Jason and Greg from Colyton Grammar School also worked out what was happening:

It does not matter in what order the cards are put down because the result of using a win card is that your money is multiplied by 1.5 and the result of you using a lose card is that your money is multiplied by 0.5.
As multiplication is commutitive whatever order the cards are placed the results will be the same!

A lose followed by a win results in a return of 3/4 (0.5 x 1.5) of your stake.
This is with a ratio of 1:1 red:black.
Given the 6 cards the return is 27/64 of your stake.

In order to win, the ratio of red:black cards has got to be at least 1.71:1.
This is because in order to cancel the effect of one black card which is multiplying by 0.5 you need to multiply it by at least 2 as 0.5 x 2 = 1.
Since each red card multiplies by 1.5 you need to find the number (power) of 1.5's you need to multiply to get 2.

That is, what is x if $1.5^x$ is going to be greater than or equal to 2? (Answer: x has to be greater than or equal to 1.71)

You may also like

Tweedle Dum and Tweedle Dee

Two brothers were left some money, amounting to an exact number of pounds, to divide between them. DEE undertook the division. "But your heap is larger than mine!" cried DUM...

Sum Equals Product

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so for any whole numbers?

Special Sums and Products

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo