Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Round and Round and Round

Age 11 to 14
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

This problem offers students an opportunity to test their understanding of division and to consider different ways in which calculators can be used.

The interactivity also offers students a chance to explore the relationships between the angles of turn that produce the same vertical and horizontal displacements.

This printable worksheet may be useful: Round and Round and Round

Follow up questions could include:

Imagine the dot starts at the point $(1,0)$, turns through $20$ $000$ degrees anticlockwise and then stops.

Through what angle(s) between $0$ and $360$ degrees would the dot have had to turn if it was to finish the same distance above/below the horizontal axis?

If I type $20$ $000$ $\div$ $360$ into my calculator the answer on the screen is $55.555556$
How can this help me answer the question?

Similarly for $40$ $000$ degrees.
If I type $40$ $000$ $\div$ $360$ into my calculator the answer on the screen is $111.11111$.

Similarly for $80$ $000$ degrees.
If I type $80$ $000$ $\div$ $360$ into my calculator the answer on the screen is $222.22222$.

Similarly for $250$ $000$ degrees.
If I type $250$ $000$ $\div$ $360$ into my calculator the answer on the screen is $694.44444$.

And what about horizontal displacements to the left/right of the vertical axis?

Students could make up their own questions...

You may also like

Matching Fractions, Decimals and Percentages

Can you match pairs of fractions, decimals and percentages, and beat your previous scores?

Sept 03

What is the last digit of the number 1 / 5^903 ?

Too Close to Call

Weekly Problem 24 - 2012
Can you put these very close fractions into order?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo