Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Quaternions and Rotations

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

twin typhhons In this question we see how quaternions are used to give rotations of ${\bf R^3}$.

(1) Consider the quaternion $$q = {1\over \sqrt 2} + {1\over \sqrt 2}{\bf i} + 0{\bf j} + 0 {\bf k}.$$ (a) Show that the multiplicative inverse of $q$ is given by $$q^{-1} = {1\over \sqrt 2} - {1\over \sqrt 2}{\bf i}$$ (b) Show that for all scalar multiples $x = t{\bf i}$ of the vector ${\bf i}$, $q x = x q$ and hence $q x q^{-1} = x$. This proves that the map $F(x) = q x q^{-1}$ fixes every point on the x axis.

(c) What happens to points on the y axis under the mapping $F$? To answer this work out $F({\bf j})$. Also compute $F({\bf k})$ and show that ${\bf k} \to {\bf -j}.$
(2) Consider the quaternion $q = \cos \theta + \sin \theta {\bf k}$

(a) Show that $\cos \theta - \sin \theta {\bf k}$ is the multiplicative inverse of $q$.

(b) Show that $q{\bf k}q^{-1}={\bf k}$.

(c) Show that $$q v q^{-1}= r(\cos (2\theta + \phi) {\bf i} + \sin (2\theta + \phi){\bf j})$$ where $v = (r\cos \phi {\bf i} + \sin \phi {\bf j}+0{\bf k})$ and hence that the map $G(v)= q v q^{-1}$ is a rotation about the z axis by an angle $2\theta$.
rotation by 2theta

To read about number systems, where quaternions fit in, why there are no three dimensional numbers and numbers in higher dimensions, see the NRICH article What Are Numbers?
If you want to know how quaternions are used in computer graphics and animation in film making read the Plus Article Maths goes to the movies .
The NRICH article The use of maths in computer games tells you a lot more about the subject. Though this article uses complex numbers and vectors and not quaternions,the mathematics is the same with quaternions which just give a shorter and neater way of writing down and working with the functions that give reflections and rotations in 3-space .


You may also like

Flexi Quads

A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?

A Knight's Journey

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Napoleon's Theorem

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo