Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Quaternions and Rotations

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Andrei from Romania sent in a good solution to this problem.

(1)(a) We have to show that $qq^{-1} = 1$: $$q^{-1} = ({1\over \sqrt 2} + {1\over \sqrt 2}{\bf i}) ({1\over \sqrt 2} - {1\over \sqrt 2}{\bf i}) = {1\over 2}(1 - {\bf i}^2) = 1$$ (b)Take $x = ti$ to be any point on the x-axis. Then $qx = ({1\over \sqrt 2} + {1\over \sqrt 2}{\bf i})t{\bf i} = {-1\over \sqrt 2} + {1\over \sqrt 2}{\bf i})t = xq.$

We have shown that $qx = xq$ and so $qxq^{-1} = x$.

rotation by 90 degrees Let $F(v) = qvq^{-1}$ be a mapping of points $v$ in $R^3$ to images in $R^3$ where the 4-dimensional quaternion $q$ acts as an operator. We have proved that this mapping fixes every point on the x axis.

(c)What effect does this mapping have on other points in $R^3$? $$F({\bf j})= qjq^{-1} = ({1\over \sqrt 2} + {1\over \sqrt 2}{\bf i})({\bf j}) ({1\over \sqrt 2} - {1\over \sqrt 2}{\bf i})$$ $$ = {1\over 2}(1+{\bf i})({\bf j})((1 - {\bf i})$$ $$ = {1\over 2}({\bf j} + {\bf k})(1 - {\bf i})$$ $$ = {1\over 2}({\bf j} + {\bf k} + {\bf k} - {\bf j})$$ $$= {\bf k}.$$ Similarly $F{\bf k} = -{\bf j}$. Parts (b) and (c) together show that the mapping $F(v) = qvq^{-1}$, where $q = \cos (\pi /4) + \sin (\pi /4) {\bf i}$, gives a rotation of $\pi /2$ about the x axis.

rotations by 2theta (2) In this section we consider the mapping $G(v) = qvq^{-1}$ of $R^3$ to $R^3$ where the quaternion $q = \cos \theta + \sin \theta {\bf k}$ is an operator.

(a) $(cos \theta + \sin\theta k)(\cos \theta - \sin \theta k) = \cos^2 \theta + \sin^2 \theta = 1$ so these two quaternions are multiplicative inverses.

(b) We have $qk = -\sin \theta + \cos \theta k = kq$ and hence $qkq^{-1} = k$. So the mapping $G(v) = qvq^{-1}$ fixes the z-axis.

(c) What effect does the mapping $G$ have on vectors in $R^3$? We consider the vector $v = r(\cos \phi {\bf i} + \sin \phi {\bf j})$. $$ qvq^{-1} =(\cos \theta + \sin \theta {\bf k})r(\cos \phi {\bf i} + \sin \phi {\bf j}) (\cos \theta - \sin \theta {\bf k}) $$ $$= r((\cos \theta\cos \phi - \sin \theta \sin \phi){\bf i} +(\cos \theta \sin \phi + \sin \theta \cos \phi){\bf j}) \cos \theta {\bf i} -\sin \theta {\bf k}) $$ $$ = r(\cos (\theta + \phi) {\bf i} + \sin (\theta + \phi){\bf j}) (\cos \theta {\bf i} -\sin \theta {\bf k}) $$ $$= r((\cos (\theta +\phi)\cos \theta - \sin (\theta + \phi)\sin \phi){\bf i} + (\cos (\theta +\phi)\sin \theta + \sin (\theta + \phi)\cos phi){\bf j})$$ $$= r(\cos (2\theta + \phi){\bf i} + \sin (2\theta + \phi){\bf j}).$$

We have shown $qkq^{-1} = k$ so $G(v+tk)= q(v +tk)q^{-1} = qvq^{-1} + qtkq^{-1} = qvq^{-1} + tk$ for all $t$.

We can see that the vector $v$ in the $xy$ plane is rotated about the $z$ axis by an angle $2\theta$ and all points on the vertical line through it are also rotated about the $z$-axis by an angle $2\theta$.

So by the mapping $G(v) = qvq^{-1}$ all points in $R^3$ are rotated by $2\theta$ about the $z$-axis.

Note that, for any rotation of $R^3$, we can make a transformation of the coordinate system so that the axis of the rotation is made to coincide with the $z$-axis, then perform the rotation by the given angle about the $z$-axis, and finally transform back to the original coordinate system.


You may also like

Flexi Quads

A quadrilateral changes shape with the edge lengths constant. Show the scalar product of the diagonals is constant. If the diagonals are perpendicular in one position are they always perpendicular?

A Knight's Journey

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Napoleon's Theorem

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo