Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Number the Sides

Age 7 to 11
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Number the Sides


The triangles in this set are 'similar':

first set of triangles


'Similar' means that the triangles are exactly the same shape, but not the same size. The sides are in the same ratio to each other. (Note that these triangles are not drawn to scale.)

What can you say about the length of the side of the third triangle which is marked with a question mark? Of course the triangles could be different ways up, too:

same as first set but different orientation


There are five more sets of similar triangles below. Can you work out the lengths of the sides marked with a question mark?

Set 2:



Set 3:



Set 4:



Set 5:



Set 6:


 

Why do this problem?

This problem is a good introduction to the numerical aspects of similar triangles. It will also bring in ratio, and use multiplication and division.


Possible approach

You might suggest that children have a go at the Matching Triangles problem before they try this, which would offer a good basic introduction to similar triangles and might provoke some interesting discussion amongst the class.

This problem would be best introduced to the whole group at first. You could simply show them the first three triangles and ask them what they think the missing length is. Invite children to explain to everyone how they worked out their response. Listening to different ways of articulating the thought processes will help those who are not so sure find an explanation which they can make their own. The next step might be to show the group the same set of triangles but with the third triangle in a different orientation as in the second image. This will challenge them a little at first but makes a good lead into the main activity.

You could print off copies of this sheet for the children to use, which has all the sets of triangles on it.


Key questions

Would it help to write out the lengths of the sides of each triangle in a set?
Why don't you compare the shortest side of the first triangle with the shortest side of the third triangle?
How about comparing the two "middle length" sides?
Can you use this to work out what the longest side length is in the third triangle?


Possible extension

Learners could draw their own sets of similar triangles.


Possible support

Suggest using the interactivity in this simpler problem which introduces similar triangles.
 

You may also like

Is a Square a Rectangle?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo